Buch, Englisch, Band 7, 241 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 5207 g
Reihe: Studies in Big Data
Buch, Englisch, Band 7, 241 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 5207 g
Reihe: Studies in Big Data
ISBN: 978-3-319-06937-1
Verlag: Springer International Publishing
This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Funktionale, Logische, Parallele und Visuelle Programmierung
- Mathematik | Informatik EDV | Informatik Technische Informatik Grid-Computing & Paralleles Rechnen
Weitere Infos & Material
Introduction.- Supervised Learning.- Unsupervised and Semi-supervised Learning.- Large-Scale Machine Learning.