Buch, Englisch, 489 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 762 g
From Classical Paths to Path Integrals
Buch, Englisch, 489 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 762 g
ISBN: 978-3-319-86369-6
Verlag: Springer International Publishing
The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction.- The Action Principles in Mechanics.- The Action Principle in Classical Electrodynamics.- Application of the Action Principles.- Jacobi Fields, Conjugate Points.-Canonical Transformations.- The Hamilton–Jacobi Equation.- Action-Angle Variables.- The Adiabatic Invariance of the Action Variables.- Time-Independent Canonical Perturbation Theory .- Canonical Perturbation Theory with Several Degrees of Freedom.- Canonical Adiabatic Theory.- Removal of Resonances.- Superconvergent Perturbation Theory, KAM Theorem.- Poincaré Surface of Sections, Mappings.- The KAM Theorem.- Fundamental Principles of Quantum Mechanics.- Functional Derivative Approach.- Examples for Calculating Path Integrals.- Direct Evaluation of Path Integrals.- Linear Oscillator with Time-Dependent Frequency.- Propagators for Particles in an External Magnetic Field.- Simple Applications of Propagator Functions.- The WKB Approximation.- Computing the trace.- Partition Function for the Harmonic Oscillator.- Introduction to Homotopy Theory.- Classical Chern–Simons Mechanics.- Semiclassical Quantization.- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem.- Berry’s Phase.- Classical Geometric Phases: Foucault and Euler.- Berry Phase and Parametric Harmonic Oscillator.- Topological Phases in Planar Electrodynamics.- Path Integral Formulation of Quantum Electrodynamics.- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method.- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics.- Appendix.- Solutions.- Index.