Reinhart | Differential Geometry of Foliations | E-Book | sack.de
E-Book

E-Book, Englisch, 196 Seiten, Web PDF

Reihe: Mathematics and Statistics (R0)

Reinhart Differential Geometry of Foliations

The Fundamental Integrability Problem
Erscheinungsjahr 2012
ISBN: 978-3-642-69015-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

The Fundamental Integrability Problem

E-Book, Englisch, 196 Seiten, Web PDF

Reihe: Mathematics and Statistics (R0)

ISBN: 978-3-642-69015-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Whoever you are! How can I but offer you divine leaves . . . ? Walt Whitman The object of study in modern differential geometry is a manifold with a differ ential structure, and usually some additional structure as well. Thus, one is given a topological space M and a family of homeomorphisms, called coordinate sys tems, between open subsets of the space and open subsets of a real vector space V. It is supposed that where two domains overlap, the images are related by a diffeomorphism, called a coordinate transformation, between open subsets of V. M has associated with it a tangent bundle, which is a vector bundle with fiber V and group the general linear group GL(V). The additional structures that occur include Riemannian metrics, connections, complex structures, foliations, and many more. Frequently there is associated to the structure a reduction of the group of the tangent bundle to some subgroup G of GL(V). It is particularly pleasant if one can choose the coordinate systems so that the Jacobian matrices of the coordinate transformations belong to G. A reduction to G is called a G-structure, which is called integrable (or flat) if the condition on the Jacobians is satisfied. The strength of the integrability hypothesis is well-illustrated by the case of the orthogonal group On. An On-structure is given by the choice of a Riemannian metric, and therefore exists on every smooth manifold.

Reinhart Differential Geometry of Foliations jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Differential Geometric Structures and Integrability.- 1. Pseudogroups and Groupoids.- 2. Foliations.- 3. The Integrability Problem.- 4. Vector Fields and Pfaffian Systems.- 5. Leaves and Holonomy.- 6. Examples of Foliations.- II. Prolongations, Connections, and Characteristic Classes.- 1. Truncated Polynomial Groups and Algebras.- 2. Prolongation of a Manifold.- 3. Higher Order Structures.- 4. Connections and Characteristic Classes.- 5. Foliations, Connections, and Secondary Classes.- III. Singular Foliations.- 1. The Classifying Space for a Topological Groupoid.- 2. Vector Fields and the Cohomology of Lie Algebras.- 3. Frobenius Structures.- IV. Metric and Measure Theoretic Properties of Foliations.- 1. Analytic Background.- 2. Measure, Volume, and Foliations.- 3. Foliations of a Riemannian Manifold.- 4. Riemannian Foliations.- 5. Foliations with a Few Derivatives.- Supplementary Bibliography.- Index of Terminology.- Index of Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.