Reilly | Fundamentals of Linear Algebra for Signal Processing | E-Book | sack.de
E-Book

E-Book, Englisch, 321 Seiten

Reilly Fundamentals of Linear Algebra for Signal Processing


Erscheinungsjahr 2025
ISBN: 978-3-031-68915-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 321 Seiten

ISBN: 978-3-031-68915-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Signal processing is ubiquitous in many fields of science and engineering. This textbook is tailored specifically for graduate students and presents linear algebra, which is requisite knowledge in these fields, in a form explicitly targeted to signal processing and related disciplines. Written by an experienced author with over 35 years of expertise in signal processing research and teaching, this book provides the necessary foundation in a focused and accessible manner, offering a practical approach to linear algebra without sacrificing rigor. Emphasis is placed on a deeper conceptualization of material specific to signal processing so students may more readily adapt this knowledge to actual problems in the field. Since other emerging areas, such as machine learning, are closely related to signal processing, the book also provides the necessary background in this discipline. The book includes many examples and problems relevant to signal processing, offering explanations and insights that are difficult to find elsewhere.

will allow students to master the essential knowledge of linear algebra for signal processing. It is also an essential guide for researchers and practitioners in biomedical, electrical, chemical engineering, and related disciplines.

Reilly Fundamentals of Linear Algebra for Signal Processing jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1. Fundamental Concepts.- Chapter 2. Eigenvalues, Eigenvectors and Correlation.- Chapter 3. The Singular Value Decomposition(SVD).- Chapter 4. The Quadratic Form.- Chapter 5. Gaussian Elimination and Associated Numerical Issues.- Chapter 6. The QR Decomposition.- Chapter 7. Linear Least Squares Estimation.- Chapter 8. The Rank Deficient Least Squares Problem.- Chapter 9. Regularization.- Chapter 10. Toeplitz Systems.


James P. Reilly, Ph.D. , is a Professor Emeritus in the Department of Electrical and Computer Engineering and the School of Biomedical Engineering at McMaster University. He works at the interface of machine learning and signal processing applied to health-related problems, and he has made pioneering contributions to treating and diagnosing psychiatric illnesses and disorders of consciousness. He has 70 refereed publications in top-tier journals, nine patents, and over 90 reviewed conference publications. In his spare time, Prof. Reilly enjoys photography, flying model airplanes, and hiking/biking on the trails near his home in Hamilton, ON.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.