Buch, Englisch, Band 1841, 158 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 550 g
Reihe: Lecture Notes in Mathematics
Buch, Englisch, Band 1841, 158 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 550 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-21839-5
Verlag: Springer
A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces . The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space does {\cal L} have at most one critical point?
A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group of transformations of , which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction.- Uniqueness of Critical Points (I).- Uniqueness of Citical Pints (II).- Variational Problems on Riemannian Manifolds.- Scalar Problems in Euclidean Space.- Vector Problems in Euclidean Space.- Fréchet-Differentiability.- Lipschitz-Properties of ge and omegae.