Reich | Die Entwicklung des Tensorkalküls | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 11, 334 Seiten, eBook

Reihe: Science Networks. Historical Studies

Reich Die Entwicklung des Tensorkalküls

Vom absoluten Differentialkalkül zur Relativitätstheorie
1994
ISBN: 978-3-0348-8486-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Vom absoluten Differentialkalkül zur Relativitätstheorie

E-Book, Deutsch, Band 11, 334 Seiten, eBook

Reihe: Science Networks. Historical Studies

ISBN: 978-3-0348-8486-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Die allgemeine Relativitästheorie lässt sich nur mit Hilfe des Tensorkalküls formulieren. Diesen lernte Einstein 1912 in Form des absoluten Differentialkalküls kennen. Dessen Schöpfer war Gregorio Ricci, dem zusammen mit Sophus Lie und anderen der Ausbau der Theorie der Differentialinvarianten gelang. Der absolute Differentialkalkül passte zur allgemeinen Relativitätstheorie wie ein Schlüssel zum Schloss: der in den Jahren 1884-92 von Ricci entwickelte Kalkül erfüllte in der Tat genau das physikalische Konzept der allgemeinen Relativitätstheorie, das Einstein 1907-15 ausarbeitete. Ein derartiges Zusammenpassen war nur dadurch möglich, weil sowohl Ricci innerhalb der Mathematik als auch Einstein innerhalb der Physik vergleichbare Fragen stellten, nämlich Fragen nach Invarianten bei speziellen Transformationen. Es wird versucht, den historischen Weg so genau wie möglich anhand der Quellen nachzuzeichnen. Neu ist die Herausarbeitung des invariantentheoretischen Aspekts, dem gegenüber die Bedeutung der Differentialgeometrie für die Entwicklung des Tensorkalküls in den Hintergrund treten muss.

Reich Die Entwicklung des Tensorkalküls jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Einleitung.- 2 Tensoren ohne Tensorbegriff.- 2.1 Vorformen von Tensoren in der Differentialgeometrie.- 2.1.1 Die Gaußsche Flächentheorie.- 2.1.2 Differentialparameter.- 2.1.3 Der Riemannsche Krümmungstensor.- 2.1.3.1 Riemann.- 2.1.3.2 Riemanns Nachfolger.- 2.2 Vorformen von Tensoren in der Elastizitätstheorie.- 2.2.1 Der Cauchysche Spannungs- und Verzerrungstensor.- 2.2.2 Weitere Charakteristika des Spannungs- und/oder Verzerrungstensors.- 3 Die Theorie der Formen und Invarianten.- 3.1 Anfänge der Formentheorie.- 3.2 Anfänge der Invariantentheorie.- 3.2.1 Die britische Schule.- 3.2.2 Ausbau der Formen- und Invariantentheorie.- 4 Die Entwicklung eines Tensorbegriffs und eines Tensorkalküls.- 4.1 Die Theorie der quadratischen Differentialformen bzw. Differentialinvarianten.- 4.1.1 Die kovariante Ableitung.- 4.1.2 Der absolute Differentialkalkül.- 4.1.2.1 Vorbereitende Arbeiten.- 4.1.2.2 Der Ausbau des absoluten Differentialkalküls.- 4.1.2.3 Anwendungen.- 4.1.2.4 Gesamtdarstellungen.- 4.1.2.5 Besprechungen.- 4.1.3 Theorie der Differentialinvarianten.- 4.1.3.1 Gruppenkonzept und dessen Verbindung mit dem absoluten Differentialkalkül.- 4.1.3.2 Riccis Konzepte in neuer Symbolik.- 4.1.3.3 Verallgemeinerungen von Riccis Konzepten.- 4.1.3.4 Anwendungen des Gruppenkonzeptes.- 4.1.3.5 Wrights Lehrbuch.- 4.1.3.6 Differentialinvarianten und Vektorrechnung.- 4.1.3.7 Die Theorie der Differentialinvarianten als eigenständiges Gebiet.- 4.2 Kristallographie.- 4.2.1 Voraussetzungen.- 4.2.2 Voigts Einführung des Tensorbegriffs.- 4.2.3 Tensoren höherer Ordnung.- 4.2.4 Tensoranalysis.- 4.2.5 Voigts “Kristallphysik“ von 1910.- 4.2.6 Die Rezeption der Voigtschen Tensoren in der Vektorrechnung, Elektrodynamik und Elastizitätstheorie.- 4.2.7 Weiterentwicklung der Voigtschen Tensoren.- 4.3 Vektorrechnung.- 4.3.1 Lineare Vektorfunktionen.- 4.3.2 Dyadics.- 4.3.3 Rezeption.- 4.3.4 Die Synthese mit den Voigtschen Tensoren.- 4.3.5 Weitere Entwicklungen.- 4.3.5.1 Die Binäranalyse.- 4.3.5.2 Die “Omografie vettoriali“.- 4.3.5.3 Die Affinoranalysis.- 5 Tensoren in der Relativitätstheorie.- 5.1 Einsteins mathematische Voraussetzungen.- 5.2 Spezielle Relativitätstheorie.- 5.2.1 Minkowskis Raum-Zeit.- 5.2.1.1 Einsteins unmittelbare Reaktion auf Minkowski.- 5.2.2 Vierdimensionale Tensoren, vierdimensionaler Vektorkalkül.- 5.2.2.1 Max Abraham.- 5.2.2.2 Gilbert N. Lewis.- 5.2.2.3 Arnold Sommerfeld.- 5.2.2.4 Max von Laue.- 5.3 Allgemeine Relativitätstheorie.- 5.3.1 Die Rezeption des absoluten Differentialkalküls in der Differentialgeometrie und in der Physik.- 5.3.2 Einsteins und Großmanns Zusammenarbeit.- 5.3.3 Die Jahre 1914–1916.- 5.4 Die Geometriesierung der Relativitätstheorie.- 6 Schlußbetrachtung 213.- Namen- und Sachverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.