E-Book, Deutsch, 252 Seiten, eBook
Reihe: Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte
Reguläre und chaotische Dynamik
1996
ISBN: 978-3-663-12341-5
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Deutsch, 252 Seiten, eBook
Reihe: Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte
ISBN: 978-3-663-12341-5
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Weitere Infos & Material
I Dynamische Systeme.- 1 Definition des dynamischen Systems.- 2 Typen der Bewegung eines dynamischen Systems.- 3 Invariante Mengen. Grenzmengen. Zentrum.- 4 Volumenänderung.- 5 Absorbierende Mengen und Attraktoren.- 6 Äquivalenz dynamischer Systeme.- 7 Hyperbolizität periodischer Orbits.- 8 Stabile und instabile Mannigfaltigkeiten.- 9 Orbitale Stabilität und Lyapunov-Stabilität von Bewegungen.- 10 Stabilität von Ruhelagen dynamischer Systeme.- 11 Stabilität periodischer Bewegungen.- 12 Periodische Punkte von Abbildungen.- 13 Existenz periodischer Orbits bei Differentialgleichungen.- 14 Zur Existenz rekurrenter und fast-perodischer Orbits.- 15 Strukturelle Stabilität.- II Bifurkationen in Morse-Smale-Systemen.- 16 Reduktion auf die Zentrumsmannigfaltigkeit.- 17 Bifurkationen nahe einer Ruhelage.- 18 Bifurkationen in einparametrigen Differentialgleichungen.- 19 Bifurkationen in zweiparametrigen Differentialgleichungen.- 20 Bifurkationen der Abspaltung periodischer Orbits.- III Chaotische dynamische Systeme.- 21 Shifts, Hufeisen und transversale homokline Punkte.- 22 Invariante Maße, Ergodizität und Mischen.- 23 Lyapunov-Exponenten.- 24 Entropien und Druck.- 25 Dimensionen.- 26 Übergänge zum Chaos.- Al Metrische Räume, Borel-Mengen und Maße.- A2 Jordansche Normalformen von Matrizen.- A3 Assoziierte Matrizen, äußere Produkte und äußere Potenzen....- Aufgaben.- Literatur.