E-Book, Englisch, Band 27, 371 Seiten, eBook
Razavi-Far / Wang / Taylor Federated and Transfer Learning
1. Auflage 2023
ISBN: 978-3-031-11748-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 27, 371 Seiten, eBook
Reihe: Adaptation, Learning, and Optimization
ISBN: 978-3-031-11748-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
An Introduction to Federated and Transfer Learning.- Federated Learning for Resource-Constrained IoT Devices: Panoramas and State of the Art.- Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms.- Cross-silo Federated Neural Architecture Search for Heterogeneous and Cooperative Systems.- A Unifying Framework for Federated Learning.- A Contract Theory based Incentive Mechanism for Federated Learning.- A Study of Blockchain-based Federated Learning.- Swarm Meta Learning.- Rethinking Importance Weighting for Transfer Learning.- Transfer Learning via Representation Learning.- Modeling Individual Humans via a Secondary Task Transfer Learning Method.- From Theoretical to Practical Transfer Learning: The Adapt Library.- Lyapunov Robust Constrained-MDPs for Sim2Real Transfer Learning.- A Study on Efficient Reinforcement Learning Through Knowledge Transfer.- Federated Transfer Reinforcement Learning for Autonomous Driving.