E-Book, Englisch, 622 Seiten
Raschka / Mirjalili Python Machine Learning, Second Edition
2. Auflage 2017
ISBN: 978-1-78712-602-2
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow
E-Book, Englisch, 622 Seiten
ISBN: 978-1-78712-602-2
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
No detailed description available for "Python Machine Learning, Second Edition".
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Contents - Giving Computers the Ability to Learn from Data
- Training Machine Learning Algorithms the Ability to Learn from Data
- A Tour of Machine Learning Classifiers Using Scikit-Learn
- Building Good Training Sets – Data Preprocessing
- Compressing Data via Dimensionality Reduction
- Learning Best Practices for Model Evaluation and Hyperparameter Tuning
- Combining Different Models for Ensemble Learning
- Applying Machine Learning to Sentiment Analysis
- Embedding a Machine Learning Model into a Web Application
- Predicting Continuous Target Variables
- Working with Unlabeled Data – Clustering Analysis
- Implementing a Multilayer Artificial Neural Network from Scratch
- Parallelizing Neural Network Training with TensorFlow
- Going Deeper: The Mechanics of TensorFlow
- Classifying Images with Deep Convolutional Neural Networks
- Modeling Sequential Data using Recurrent Neural Networks