Buch, Englisch, Band 45, 365 Seiten, Format (B × H): 179 mm x 234 mm, Gewicht: 830 g
Buch, Englisch, Band 45, 365 Seiten, Format (B × H): 179 mm x 234 mm, Gewicht: 830 g
Reihe: Water Science and Technology Library
ISBN: 978-1-4020-1297-6
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Hydrologie, Hydrogeologie
- Geowissenschaften Geologie Limnologie (Süßwasser)
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Geowissenschaften Geologie Marine Geologie, Ozeanographie (Meereskunde)
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
1. Introduction.- 2. Data Used in the Book.- 2.1. Hydrologic and Climatic Data.- 2.2. Synthetic and Observed Environmental Data.- 2.3. Observed Data.- 3. Time Domain Analysis.- 3.1. Introduction.- 3.2. Visual Inspection of Time Series.- 3.3. Statistical Tests of Significance.- 3.4. Testing Autocorrelated Data.- 3.5. Application of Trend Tests to Hydrologic Data.- 3.6. Conclusions.- 4. Frequency Domain Analysis.- 4.1. Introduction.- 4.2. Conventional Spectral Analysis.- 4.3. Multi-Taper Method (MTM) of Spectral Analysis.- 4.4. Maximum Entropy Spectral Analysis.- 4.5. Spectral Analysis of Hydrologic and Climatic Data.- 4.6. Discussion of Results.- 4.7. Conclusions.- 5. Time-Frequency Analysis.- 5.1. Introduction.- 5.2. Evolutionary Spectral Analysis.- 5.3. Evolution of Line Components in Hydrologic and Climatic Data.- 5.4. Evolution of Continuous Spectra in Hydrologic and Climatic Data.- 5.5. Conclusions.- 6. Time-Scale Analysis.- 6.1. Introduction.- 6.2. Wavelet Analysis.- 6.3. Wavelet Trend Analysis.- 6.4. Identification of Dominant Scales.- 6.5. Time-Scale Distribution.- 6.6. Behavior of Hydrologic and Climatic Time Series at Different Scales.- 6.7. Conclusions.- 7. Segmentation of Non-Stationary Time Series.- 7.1. Introduction.- 7.2. Tests based on AR Models.- 7.3. A test based on wavelet analysis.- 7.4. Segmentation algorithm.- 7.5. Variations of test statistics with the AR order p.- 7.6. Sensitivity of test statistics for detecting change points.- 7.7. Performances of algorithms with and without boundary optimization.- 7.8. Conclusions about the segmentation algorithm.- 8. Estimation of Turbulent Kinetic Energy Dissipation.- 8.1. Introduction.- 8.2. Multi-taper Spectral Estimation.- 8.3. Batchelor Curve Fitting.- 8.4. Comparison of Spectral Estimation Methods.- 8.5.Batchelor Curve Fitting to Synthetic Series.- 8.6. Conclusions on Batchelor curve fitting.- 9. Segmentation of Observed Data.- 9.1. Introduction.- 9.2. Temperature Gradient Profiles.- 9.3. Conclusions on Segmentation of Temperature Gradient Profiles.- 9.4. Hydrologic Series.- 9.5. Conclusions on Segmentation of Hydrologic Series.- 10. Linearity and Gaussianity Analysis.- 10.1. Introduction.- 10.2. Tests for Gaussianity and Linearity (Hinich, 1982).- 10.3. Testing for Stationary Segments.- 10.4. Conclusions about Testing the Hydrologic Series.- 11. Bayesian Detection of Shifts in Hydrologic Time Series.- 11.1. Introduction.- 11.2. Data Used in this Chapter.- 11.3. A Bayesian Method to Detect Shifts in Data.- 11.4. Discussion of Results.- 11.5. Conclusions.- 12. References.- 13. Index.