Ranicki | Noncommutative Localization in Algebra and Topology | Buch | 978-0-521-68160-5 | sack.de

Buch, Englisch, Band 330, 328 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 477 g

Reihe: London Mathematical Society Lecture Note Series

Ranicki

Noncommutative Localization in Algebra and Topology

Buch, Englisch, Band 330, 328 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 477 g

Reihe: London Mathematical Society Lecture Note Series

ISBN: 978-0-521-68160-5
Verlag: Cambridge University Press


Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Ranicki Noncommutative Localization in Algebra and Topology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Dedication; Preface; Historical perspective; Conference participants; Conference photo; Conference timetable; 1. On flatness and the Ore condition J. A. Beachy; 2. Localization in general rings, a historical survey P. M. Cohn; 3. Noncommutative localization in homotopy theory W. G. Dwyer; 4. Noncommutative localization in group rings P. A. Linnell; 5. A non-commutative generalisation of Thomason's localisation theorem A. Neeman; 6. Noncommutative localization in topology A. A. Ranicki; 7. L2-Betti numbers, isomorphism conjectures and noncommutative localization H. Reich; 8. Invariants of boundary link cobordism II. The Blanchfield-Duval form D. Sheiham; 9. Noncommutative localization in noncommutative geometry Z. Skoda.


Ranicki, Andrew
Andrew Ranicki is a Professor of Algebraic Surgery, at the School of Mathematics, University of Edinburgh.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.