Buch, Englisch, 397 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g
Buch, Englisch, 397 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g
Reihe: Springer Monographs in Mathematics
ISBN: 978-3-319-89061-6
Verlag: Springer International Publishing
Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists.
Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, withmany results old and new.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 The difference construction.- 2 Umkehr maps and inner product spaces.- 3 Stable homotopy theory.- 4 Z_2-equivariant homotopy and bordism theory.- 5 The geometric Hopf invariant.- 6 The double point theorem.- 7 The -equivariant geometric Hopf invariant.- 8 Surgery obstruction theory.- A The homotopy Umkehr map.- B Notes on Z2-bordism.- C The geometric Hopf invariant and double points (2010).- References.- Index.