E-Book, Englisch, 61 Seiten, eBook
Ramm The Navier–Stokes Problem
1. Auflage 2022
ISBN: 978-3-031-02431-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 61 Seiten, eBook
Reihe: Synthesis Lectures on Mathematics & Statistics
ISBN: 978-3-031-02431-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The main result of this book is a proof of the contradictory nature of the Navier?Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on R+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution ???(????, ????) to the NSP exists for all ???? = 0 and ????(????, ????) = 0). It is shown that if the initial data ????0(????) ? 0, ????(????,????) = 0 and the solution to the NSP exists for all ???? ? R+, then ????0(????) := ????(????, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space ????21(R3) × C(R+) is proved, ????21(R3) is the Sobolev space, R+ = [0, 8). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Introduction.- Brief History of the Navier–Stokes Problem.- Statement of the Navier–Stokes Problem.- Theory of Some Hyper-Singular Integral Equations.- A Priori Estimates of the Solution to the NSP.- Uniqueness of the Solution to the NSP.- The Paradox and its Consequences.- Logical Analysis of Our Proof.- Appendix 1 – Theory of Distributions and Hyper-Singular Integrals.- Appendix 2 – Gamma and Beta Functions.- Appendix 3 – The Laplace Transform.- Bibliography.- Author's Biography.