Ramadoss / Deshmukh / Mustansar Hussain | Sustainable Materials in Supercapacitors | Buch | 978-0-443-23625-9 | sack.de

Buch, Englisch, 600 Seiten, Format (B × H): 152 mm x 229 mm

Ramadoss / Deshmukh / Mustansar Hussain

Sustainable Materials in Supercapacitors

New Developments in Green Energy Storage
Erscheinungsjahr 2025
ISBN: 978-0-443-23625-9
Verlag: Elsevier Science

New Developments in Green Energy Storage

Buch, Englisch, 600 Seiten, Format (B × H): 152 mm x 229 mm

ISBN: 978-0-443-23625-9
Verlag: Elsevier Science


Sustainable Materials in Supercapacitors: New Developments in Green Energy Storage investigates green materials-based supercapacitors, considering not only their fundamental characteristics but also implications of their use at industrial scales. The book focuses on the special synthesis techniques, applications, and commercial challenges associated with green supercapacitors. The book sets out the components and performance-governing parameters of green supercapacitors and identifies the challenges and limitations involved in their implementation. It is split into three parts: the first part extensively covers the fundamentals of green supercapacitors, the second part looks at applications, and the final part presents case studies and considers future developments. The book will be of value to postgraduate students and research scholars, as well as industry professionals working in sustainable energy, materials science, nanomaterials, and the electronic and automobile industries.

Ramadoss / Deshmukh / Mustansar Hussain Sustainable Materials in Supercapacitors jetzt bestellen!

Weitere Infos & Material


PART I: Fundamentals of Green Supercapacitors
1. Introduction to Green Supercapacitors: Current Research Trends, Prospects and Challenges
2. Supercapacitors: Classification, Working Principle, Design Considerations, Novel Electrode and Electrolyte Materials
3. True Performance Metrics of Supercapacitor
4. Synthesis Approaches of Green Materials for Supercapacitors: An Overview
5. Electroactive Materials Derived from Green Sources for Supercapacitors: An Overview
6. Agro, Municipal and Forest Waste-Derived Active Materials for Supercapacitors
7. Industrial Waste-derived Active Materials for Supercapacitors
8. Animal Waste and Sea Waste Derived Materials for Supercapacitors
9. Bio-Inspired Electroactive Materials for Supercapacitors
10. Biopolymer-Based Electroactive Materials for Electrochemical Supercapacitors
11. Bioactive and Biodegradable Materials for Supercapacitors
12. Green Nanocomposites/Hybrids for Supercapacitors
13. Natural-Derived Electrolytes for Supercapacitors

PART II: Applications of Green Supercapacitors
14. Wearable and Portable Electronic Applications
15. Green Supercapacitors in Transportation Systems
16. Emerging Applications of Green Supercapacitors

PART III: Case Studies on Green Supercapacitors
17. Sustainable Supercapacitors Based on Bio-Derived Materials
18. Economic Feasibility, Safety Regulations, Environment and Health Impact, Ethical and Social
19. Conclusions and Future Perspectives


Mustansar Hussain, Chaudhery
Chaudhery Mustansar Hussain is an Adjunct Professor and Director of Laboratories in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, United States. His research is focused on the applications of nanotechnology and advanced materials, environmental management, analytical chemistry, and other industries. Dr. Hussain is the author of numerous papers in peer-reviewed journals as well as a prolific author and editor in his research areas. He has published with Elsevier, the American Chemical Society, the Royal Society of Chemistry, John Wiley & Sons, CRC Press, and Springer.

Ramadoss, Ananthakumar
Ananthakumar Ramadoss is an assistant professor at the Advanced Research School for Technology & Product Simulation (ARSTPS), Central Institute of Petrochemical Engineering and Technology (CIPET), Chennai, India. His research interests mainly focus on developing nanostructured materials and their applications in supercapacitors, nanogenerators, self-powered systems, thin films, corrosion protection, and bio-implants.

Deshmukh, Kalim
Kalim Deshmukh is a Senior Researcher at the New Technologies-Research Centre, University of West Bohemia, Pilsen, Czech Republic. He has over 20 years of research experience working with various nanostructured materials, and polymeric materials, especially polymer blends, and nanocomposites for numerous applications. His research interest is mainly focused on the synthesis, characterization,
and evaluation of the structure-property relationships of different polymers reinforced with various nanofillers including metal and metal oxide nanoparticles, carbon allotropes, and novel 2D nanomaterials for energy storage, gas sensing and EMI shielding applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.