Rakotoson Relative Rearrangement
Erscheinungsjahr 2025
ISBN: 978-3-032-02228-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 414 Seiten
Reihe: Mathematics and Statistics
ISBN: 978-3-032-02228-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book develops the properties of monotone rearrangement and relative rearrangement (sometimes called pseudo-rearrangement). It introduces applications to variational problems involving monotone rearrangements, a priori estimates for partial differential equations, and stationary or evolution problems associated with variable exponents. The properties of Sobolev embeddings for non-standard spaces such as BMO, VMO, Zygmung spaces and more general spaces invariant under rearrangement are also reviewed. The book is relatively self-contained – elementary details for non-specialists are covered in the first chapter, including, among other things, some punctual inequalities for the Sobolev embeddings and Pólya-Szego type inequalities, which lead, for instance, to explicit and even precise estimates. The final chapter includes numerous exercises, with solutions. Based on the author’s (Springer, 2008), this edition contains additional recent results and new exercises concerning interpolation theory.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. Monotone Rearrangement.- Chapter 2. Relative Rearrangement.- Chapter 3. Polya–Szego inequalities and regularity of monotone rearrangement.- Chapter 4. Pointwise inequalities and Sobolev inclusions.- Chapter 5. Formalism of estimates for boundary value problems.- Chapter 6. Continuity of the derivative map of the monotone rearrangement.- Chapter 7. Strong continuity of the relative rearrangement map u ! b*u and consequences.- Chapter 8. Some problems related to relative rearrangement.- Chapter 9. Time-dependent functions and evolution equations.- Chapter 10. Relative rearrangement and Lebesgue spaces with variable exponents.- Chapter 11. Exercises and Problems.




