Rahmandoust / Ayatollahi | Nanomaterials for Advanced Biological Applications | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 104, 224 Seiten

Reihe: Advanced Structured Materials

Rahmandoust / Ayatollahi Nanomaterials for Advanced Biological Applications


1. Auflage 2019
ISBN: 978-3-030-10834-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 104, 224 Seiten

Reihe: Advanced Structured Materials

ISBN: 978-3-030-10834-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents an overview of the ways in which the latest experimental and theoretical nanotechnologies are serving the fields of biotechnology, medicine, and biomaterials. They not only enhance the efficiency of common therapeutics and lower their risks, but thanks to their specific properties, they also provide new capabilities. Nano-scale measurement techniques, such as nano-indentation and nano-scratch methods, could potentially be used to characterize the physical and mechanical properties of both natural tissues and synthetic biomaterials in terms of strength and durability.

Rahmandoust / Ayatollahi Nanomaterials for Advanced Biological Applications jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;10
3;Contributors;11
4;Nanoparticles and Biological Environment Interactions;13
4.1;1 Introduction;13
4.2;2 Formation and Composition;14
4.3;3 Evaluating Protein Corona;17
4.3.1;3.1 Experimental Approach;17
4.3.2;3.2 Computational Approach;18
4.4;4 Factors Affecting Protein Corona;19
4.5;5 Impacts of Protein Corona on Nanoparticle Behaviour;20
4.6;6 Opportunities and Challenges;23
4.7;7 Personalized Protein Corona;26
4.8;8 Conclusion;26
4.9;References;27
5;Nanotopographical Control of Cell Assembly into Supracellular Structures;30
5.1;1 Cell Adhesion Molecules (CAMs) Control the Organization of Cells Within the ECM;30
5.2;2 Nanotechnology, Scaffolds and Artificial Analogues of the ECM;31
5.3;3 Generation of Nano-patterned Surfaces;32
5.3.1;3.1 Generating Rough Surfaces Using Wet Etching Procedures;32
5.3.2;3.2 Generating Nanoporous Surfaces Using Electrochemical Wet Etching;34
5.3.3;3.3 Silver and Gold Nanoparticle Clusters Obtained by Electroless Deposition;35
5.3.4;3.4 Lithography Techniques for the Definition of Periodic Nanostructures;37
5.3.5;3.5 Reactive Ion Etching Techniques for the Fabrication of Super-Hydrophobic, 2 + 1 Dimensional Surfaces;38
5.4;4 Characterization of Nano-Patterned Surfaces;39
5.4.1;4.1 Fractal Dimension of a Surface;39
5.4.2;4.2 Diffusion Limited Aggregation (DLA) of Atoms into Supramolecular Structures;41
5.4.3;4.3 Surface Wettability, Cassie Baxter and Recursive Cassie Baxter;42
5.5;5 Characterization of Cell Networks;44
5.5.1;5.1 Network Analysis and Cell Network Topology;44
5.6;6 Shannon Information Entropy in Cell Networks;46
5.7;7 Cell Adhesion and Proliferation on Nano-patterned Surfaces;48
5.7.1;7.1 Cell Adhesion on Nano-scale Rough Surfaces;48
5.7.2;7.2 Cell Adhesion on Porous Silicon Surfaces;50
5.7.3;7.3 Controlling Cell Adhesion and Proliferation on Fractal Surfaces;50
5.8;8 Measuring CAMs on Nano-patterned Surfaces;51
5.9;9 Cell Networking on Nano-patterned Surfaces;53
5.9.1;9.1 The Topology of Neuronal Networks on Nano-patterned Surfaces;53
5.9.2;9.2 Nano-scale Cues Influence Information Flow in Planar Neuronal Networks;55
5.9.3;9.3 3D Neuronal Networking;56
5.10;10 Possible Physical Reasons for Cell Clustering: Minimization of Energy Density;57
5.10.1;10.1 Free Energy Landscape of Small World Neuronal Networks;57
5.10.2;10.2 Out of Equilibrium Self-assembly;58
5.11;11 The Equivalence Principle in the Self-assembly of Cells;60
5.12;References;61
6;Polymeric Nanoparticulates as Efficient Anticancer Drugs Delivery Systems;65
6.1;1 Introduction;65
6.2;2 Polymeric Nanoparticulate Systems as Platforms for Drug and Gene Delivery;66
6.2.1;2.1 Natural-Based Polymers as Building Blocks of NPs;67
6.2.2;2.2 Synthetic-Based Polymers as Building Blocks of NPs;73
6.3;3 Active Targeting Utilizing Ligand Decorated NPs;76
6.3.1;3.1 Monoclonal Antibodies (mAbs);77
6.3.2;3.2 Folic Acid;79
6.3.3;3.3 Transferrin;80
6.3.4;3.4 Peptide;81
6.3.5;3.5 Saccharides;83
6.3.6;3.6 Aptamers;83
6.4;4 Polymeric Nanoparticles Marketed and Under Clinical Trials;84
6.5;5 Conclusion;85
6.6;References;85
7;Hydroxyapatite for Biomedicine and Drug Delivery;95
7.1;1 Introduction;95
7.2;2 Different Synthesis Methods;98
7.3;3 Applications;99
7.4;4 Tissue Engineering;103
7.5;5 Antibacterial Activity;107
7.6;6 Ions Substitutions;109
7.7;7 Dental Treatment;110
7.8;8 Implant;112
7.9;9 Drug Delivery;113
7.10;10 Conclusion;119
7.11;References;120
8;Nanoparticles for Biosensing;131
8.1;1 Introduction;131
8.2;2 Biosensor Structure;132
8.2.1;2.1 Biosensors Categorization Based on the Type of Analyte;133
8.2.2;2.2 Biosensors Categorization Based on Transformations;134
8.3;3 Biorecognition Elements;134
8.3.1;3.1 Receptors;134
8.3.2;3.2 Enzyme-Based Recognition;134
8.3.3;3.3 Antibody-Based Recognition;135
8.3.4;3.4 Aptamer-Based Recognition;135
8.3.5;3.5 Peptide Nucleic Acid (PNA)-Based Recognition;135
8.3.6;3.6 Molecular Imprint Based Recognition;136
8.3.7;3.7 Lectin-Based Recognition;136
8.4;4 Acoustic Based Biosensors;136
8.4.1;4.1 Bulk Acoustic Wave (BAW) Devices;138
8.4.2;4.2 Surface Acoustic Wave Sensors (SAW);139
8.4.3;4.3 Micro/Nano-electromechanical Systems (MEMs/NEMs);140
8.5;5 Optical Biosensors;140
8.5.1;5.1 Surface Plasmon Resonance (SPR) Biosensors;140
8.5.2;5.2 SPR Imaging;141
8.5.3;5.3 Localized Surface Plasmon Resonance (LSPR);142
8.5.4;5.4 Evanescent Wave Fluorescence Biosensors;143
8.5.5;5.5 Bioluminescent Optical Fibre Biosensors;144
8.5.6;5.6 Some Other Types of Optical Biosensors;144
8.6;6 Electrochemical Biosensors;145
8.6.1;6.1 Amperometric Biosensors;145
8.6.2;6.2 Impedimetric Sensors;146
8.6.3;6.3 Chronocoulometric Sensors;147
8.6.4;6.4 Nanoparticle, Nanowire and Nanotube’s Roles;148
8.6.5;6.5 Nanowires and Nanotubes;148
8.6.6;6.6 Graphene-Based Electrochemical Biosensors;149
8.7;7 Thermal Biosensors;149
8.8;8 Magnetic Nanoparticle Sensors;149
8.8.1;8.1 Magnetic Relaxation Switch Assay-Sensors;150
8.8.2;8.2 Magnetic Particle Relaxation Sensors;150
8.8.3;8.3 Magnetoresistive Sensors;150
8.9;References;150
9;Carbon Quantum Dots in Nanobiotechnology;154
9.1;1 Introduction;154
9.2;2 Carbon Quantum Dots Structure;156
9.3;3 Carbon Quantum Dots Synthesis;156
9.3.1;3.1 Hydrothermal/Solvothermal Treatment;157
9.3.2;3.2 Microwave Irradiation;157
9.3.3;3.3 Carbonization;159
9.3.4;3.4 Laser Ablation;159
9.3.5;3.5 Chemical Ablation;161
9.4;4 Photoluminescence Mechanism in CQDs;161
9.4.1;4.1 Quantum Confinement Derived PL;162
9.4.2;4.2 Surface State Derived PL;163
9.5;5 Biocompatibility and Cytotoxicity;164
9.6;6 Upconversion PL of CQDs;165
9.7;7 Bioimaging;166
9.7.1;7.1 In Vitro Bioimaging;168
9.7.2;7.2 In Vivo Bioimaging;173
9.8;8 Biosensing;175
9.9;9 Drug Delivery;176
9.10;10 Wound-Dressing;179
9.11;11 Photocatalysis;179
9.12;12 Conclusion;180
9.13;References;181
10;Size-Dependent Nonlinear Mechanics of Biological Nanoporous Microbeams;189
10.1;1 Introduction;189
10.2;2 Analytical Extracted Properties of Nanoporous Biomaterials;191
10.3;3 Nonlocal Strain Gradient Hyperbolic Shear Deformable Beam Model;198
10.4;4 Numerical Results and Discussion;204
10.5;5 Conclusion;207
10.6;Appendix A;209
10.7;References;210
11;Mechanical Behaviour of PMMA Bio-polymer Loaded by Nano-scale Additives;216
11.1;1 Introduction;217
11.2;2 Acrylic Bone Cement;218
11.3;3 Mechanical and Tribological Properties of the PMMA Bone Cement;219
11.4;4 PMMA Bone Cement Composites and Nanocomposites;220
11.5;5 Hydroxyapatite;223
11.6;6 PMMA/HA Bone Cement Nano-Composites;225
11.7;7 Constitutive Material Model for the PMMA Bone Cement;226
11.8;8 Conclusion;229
11.9;References;229



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.