Raghunathan | Missing Data Analysis in Practice | Buch | 978-1-4822-1192-4 | sack.de

Buch, Englisch, 230 Seiten, Format (B × H): 162 mm x 244 mm, Gewicht: 468 g

Reihe: Chapman & Hall/CRC Interdisciplinary Statistics

Raghunathan

Missing Data Analysis in Practice

Buch, Englisch, 230 Seiten, Format (B × H): 162 mm x 244 mm, Gewicht: 468 g

Reihe: Chapman & Hall/CRC Interdisciplinary Statistics

ISBN: 978-1-4822-1192-4
Verlag: CRC Press


Missing Data Analysis in Practice provides practical methods for analyzing missing data along with the heuristic reasoning for understanding the theoretical underpinnings. Drawing on his 25 years of experience researching, teaching, and consulting in quantitative areas, the author presents both frequentist and Bayesian perspectives. He describes easy-to-implement approaches, the underlying assumptions, and practical means for assessing these assumptions. Actual and simulated data sets illustrate important concepts, with the data sets and codes available online.

The book underscores the development of missing data methods and their adaptation to practical problems. It mainly focuses on the traditional missing data problem. The author also shows how to use the missing data framework in many other statistical problems, such as measurement error, finite population inference, disclosure limitation, combing information from multiple data sources, and causal inference.
Raghunathan Missing Data Analysis in Practice jetzt bestellen!

Zielgruppe


Researchers and graduate students in statistics, biostatistics, medical and health research, and the social and behavioral sciences.


Autoren/Hrsg.


Weitere Infos & Material


Basic Concepts. Weighting Methods. Imputation. Multiple Imputation. Regression Analysis. Longitudinal Analysis with Missing Values. Nonignorable Missing Data Mechanisms. Other Applications. Other Topics. Bibliography. Index.


Trivellore Raghunathan is the director of the Survey Research Center in the Institute for Social Research and professor of biostatistics in the School of Public Health at the University of Michigan. He has published numerous papers in a range of statistical and public health journals. His research interests include applied regression analysis, linear models, design of experiments, sample survey methods, and Bayesian inference.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.