Rage / Reddy / Goyal | Database Systems for Advanced Applications. DASFAA 2022 International Workshops | Buch | 978-3-031-11216-4 | sack.de

Buch, Englisch, Band 13248, 438 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 686 g

Reihe: Lecture Notes in Computer Science

Rage / Reddy / Goyal

Database Systems for Advanced Applications. DASFAA 2022 International Workshops

BDMS, BDQM, GDMA, IWBT, MAQTDS, and PMBD, Virtual Event, April 11-14, 2022, Proceedings
1. Auflage 2022
ISBN: 978-3-031-11216-4
Verlag: Springer International Publishing

BDMS, BDQM, GDMA, IWBT, MAQTDS, and PMBD, Virtual Event, April 11-14, 2022, Proceedings

Buch, Englisch, Band 13248, 438 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 686 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-11216-4
Verlag: Springer International Publishing


This volume constitutes the papers of several workshops which were held in conjunction with the 27th International Conference on Database Systems for Advanced Applications, DASFAA 2022, held as virtual event in April 2022.

The 30 revised full papers presented in this book were carefully reviewed and selected from 65 submissions. 

DASFAA 2022 presents the following five workshops:

·         First  workshop on Pattern mining and Machine learning in Big complex Databases (PMBD 2021)

·         6th International Workshop on Graph Data Management and Analysis (GDMA 2022)

·         First International Workshop on Blockchain Technologies (IWBT2022)

·         8th International Workshop on Big Data Management and Service (BDMS 2022)

·         First workshop on Managing Air Quality Through Data Science

·         7th International Workshop on Big Data Quality Management (BDQM 2022).


Rage / Reddy / Goyal Database Systems for Advanced Applications. DASFAA 2022 International Workshops jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Algorithm for Mining Fixed-Length High Utility Itemsets.- A Novel Method to Create Synthetic Samples with Autoencoder Multi-layer Extreme Learning Machine.- Pattern Mining: Current Challenges and Opportunities.- Why not to Trust Big Data: Identifying Existence of Simpson’s Paradox Localized Metric Learning for Large Multi-Class Extremely Imbalanced Face Database.- Top-k dominating queries on incremental datasets.- Collaborative Blockchain based Distributed Denial of Service Attack Mitigation approach with IP Reputation System.- Model-Driven Development of Distributed Ledger Applications Towards a Blockchain Solution for Customs Duty-Related Fraud.- Securing Cookies/Sessions through Non-Fungible Tokens.- Chinese Spelling Error Detection and Correction Based on Knowledge Graph Construction and Application of Event Logic Graph: A Survey.- Enhancing Low-resource Languages Question Answering with Syntactic Graph.- Profile Consistency Discrimination.- H-V:An Improved Coding Layout based on Erasure Coded Storage System.- Astral: An Autoencoder-based Model for Pedestrian Trajectory Prediction of Variable-Length.- A Survey on Spatiotemporal Data Processing Techniques in Smart Urban Rail.- Fast Vehicle Track Counting in Traffic Video.- Summary A Traffic Summarization System using Semantic Words.- Attention_Cooperated_Reinforcement_Learning_for_Multi_agent_Path_Planning.- Big Data-driven Stable Task Allocation in Ride-hailing Services.- Weighted_Mean_Field_Multi_Agent_Reinforcement_Learning_via_Reward_Attribution_Decomposition.- Evaluating Presto and SparkSQL with TPC-DS.- Optimizing the Age of Sensed Information in Cyber-Physical Systems.- Aggregate Query Result Correctness using pattern Tables.- Time Series Data Quality Enhancing based on pattern Alignment.- Research on Feature extraction method of data quality intelligent detection.- Big Data Resources to Support Research Opportunities on Air Pollution Analysis in India.- Air Quality Data Collection in Hyderabad Using Low-cost Sensors: Initial Experiences.- Visualizing Spatio-Temporal Variation of Ambient Air Pollution in Four Small Towns in India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.