Quintián / Corchado / Herrero | Hybrid Artificial Intelligent Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 355 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

Quintián / Corchado / Herrero Hybrid Artificial Intelligent Systems

19th International Conference, HAIS 2024, Salamanca, Spain, October 9–11, 2024, Proceedings, Part I

E-Book, Englisch, 355 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-031-74183-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-part proceedings volume constitutes the refereed proceedings of the 19th International Conference on Hybrid Artificial Intelligent Systems (HAIS 2024), held in Salamanca, Spain, during October 9–11, 2024.The 52 full papers were carefully reviewed and selected from 112 submissions. They were organized in topical sections as follows: Part I: Biomedical Applications, Data Mining and Decision Support Systems, Deep Learning, Evolutionary Computation and Optimization.Part II: HAIS Applications, HAIS Energy Applications, Image and Text Processing, Reinforced Learning.
Quintián / Corchado / Herrero Hybrid Artificial Intelligent Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Biomedical Applications.-
Surface EMG Profiling in Parkinsons Disease Advancing Severity Assessment with GCN SVM.- Batch balancing Improvement with Data Augmentation Techniques for Clinical Electroencephalographic Data.- The Third Codon Nucleotides Role in Genetic Recombination Within SARSCoV2 Spike Protein A Pilot Study.- Machine learning for the identification of biomarker and risk factors associated with depression in adult population Preliminary results on a small cohort.- Unveiling HIV1 U Sequences Shedding Light Through Transfer Learning on Genomic Spectrograms.- Model to early detection of autism spectrum disorder through opinion mining approach.- A Short Analysis of Hybrid Approaches in COVID19 for Detection and Diagnosing.- A Graph Neural Network with Multi head Attention for  Universal Brain Disease Diagnosis from fMRI Images.- A computer vision approach to detect facial characteristics related to encephalopathy in term infants.-
Data Mining and Decision Support Systems.-
SPADE Norms a distributed general framework for normative multi agent systems.- Finding Optimal Classroom Arrangements to Minimize Cheating in Exams Using a Hybrid AI System.- Resilience to the Flowing Unknown an Open Set Recognition Framework for Data Streams.- A comparison procedure for the evaluation of metaheuristics.- Nyström and RFF Ensembles For Large Scale Kernel Predictions.- Application of transfer learning to online models in malware detection.- A New Training Algorithm for Support Vector Machines.- Soft Adaptive Segments for Bio Inspired Temporal Memory.- Assessing Generative Artificial Intelligence in Fundamental Physics with Gaussian Processes.- Implementation of Classical Decision Trees in a Quantum Computing paradigm.- Machine Learning methods as Robust Quantum Noise Estimators
.- Deep Learning.-
The Impact of Data Annotations on the Performance of Object Detection Models in Icon Detection for GUI Images.- Bayesian Model Selection Pruning in Predictive Maintenance.- Neonates crying detection through feature extraction and Machine Learning methods.- Differentiable Prototypes with Distributed Memory Network for Continual Learning.-
Evolutionary Computation and Optimization.-
Efficient Continuous Sign Language Recognition with Temporal Shift and Channel Attention.- Solving the clustered minimum routing tree problem using Prüfer coding based hybrid genetic algorithms.- Diversity Population Metrics in Diploid and Haploid Genetic Algorithm Variants.- Early failure detection for Air Production Unit in Metro Trains.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.