Buch, Englisch, Band 37, 657 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2460 g
Reihe: Texts in Applied Mathematics
Buch, Englisch, Band 37, 657 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2460 g
Reihe: Texts in Applied Mathematics
ISBN: 978-3-540-34658-6
Verlag: Springer
This extremely popular textbook on numerical analysis provides the mathematical foundations of numerical methods. It demonstrates their performance on examples, exercises and real-life applications. This is done using the MATLAB software environment, which allows an easy implementation and testing of the algorithms for any specific class of problems. In this second edition, the readability of pictures, tables and program headings has been improved. Several changes in the chapters on iterative methods and on polynomial approximation have also been added. The book is addressed to students in Engineering, Mathematics, Physics and Computer Sciences. The attention to applications and software development makes it valuable also for users in a wide variety of professional fields.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Series Preface.- Preface.- I Getting Started.- 1. Foundations of Matrix Analysis.- 2 Principles of Numerical Mathematics.- II Numerical Linear Algebra.- 3 Direct Methods for the Solution of Linear Systems.- 4 Iterative Methods for Solving Linear Systems.- 5 Approximation of Eigenvalues and Eigenvectors.- III Around Functions and Functionals.- 6 Rootfinding for Nonlinear Equations.- 7 Nonlinear Systems and Numerical Optimization.- 8 Polynomial Interpolation.- 9 Numerical Integration.- IV Transforms, Differentiation and Problem Discretization.- 10 Orthogonal Polynomials in Approximation Theory.- 11 Numerical Solution of Ordinary Differential Equations.- 12 Two-Point Boundary Value Problems.- 13 Parabolic and Hyperbolic Initial Boundary Value Problems.- References.- Index of MATLAB Programs.- Index.