E-Book, Englisch, 317 Seiten
Reihe: Challenges and Advances in Computational Chemistry and Physics
Qu / Liu Machine Learning in Molecular Sciences
1. Auflage 2023
ISBN: 978-3-031-37196-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 317 Seiten
Reihe: Challenges and Advances in Computational Chemistry and Physics
ISBN: 978-3-031-37196-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
An Introduction to Machine Learning in Molecular Sciences.- Graph Neural Networks for Molecules.- Voxelized representations of atomic systems for machine learning applications.- Development of exchange-correlation functionals assisted by machine learning.- Machine-Learning for Static and Dynamic Electronic Structure Theory.- Data Quality, Data Sampling and Data Fitting: A Tutorial Guide for Constructing Full-dimensional Accurate Potential Energy Surfaces (PESs) of Molecules and Reactions.- Machine Learning Applications in Chemical Kinetics and Thermochemistry.- Synthesize in A Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis.- Machine Learning for Protein Engineering.




