Putler / Krider | Customer and Business Analytics | E-Book | sack.de
E-Book

E-Book, Englisch, 315 Seiten

Reihe: Chapman & Hall/CRC The R Series

Putler / Krider Customer and Business Analytics

Applied Data Mining for Business Decision Making Using R

E-Book, Englisch, 315 Seiten

Reihe: Chapman & Hall/CRC The R Series

ISBN: 978-1-4665-0398-4
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations.

The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects.

Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.
Putler / Krider Customer and Business Analytics jetzt bestellen!

Zielgruppe


Advanced undergraduate and Master's students in business and marketing.

Weitere Infos & Material


I Purpose and Process
Database Marketing and Data Mining
Database Marketing
Data Mining
Linking Methods to Marketing Applications

A Process Model for Data Mining—CRISP-DM
History and Background
The Basic Structure of CRISP-DM

II Predictive Modeling Tools
Basic Tools for Understanding Data
Measurement Scales
Software Tools
Reading Data into R Tutorial
Creating Simple Summary Statistics Tutorial
Frequency Distributions and Histograms Tutorial
Contingency Tables Tutorial

Multiple Linear Regression
Jargon Clarification
Graphical and Algebraic Representation of the Single Predictor Problem
Multiple Regression
Summary
Data Visualization and Linear Regression Tutorial

Logistic Regression
A Graphical Illustration of the Problem
The Generalized Linear Model
Logistic Regression Details
Logistic Regression Tutorial

Lift Charts
Constructing Lift Charts
Using Lift Charts
Lift Chart Tutorial

Tree Models
The Tree Algorithm
Trees Models Tutorial

Neural Network Models
The Biological Inspiration for Artificial Neural Networks
Artificial Neural Networks as Predictive Models
Neural Network Models Tutorial

Putting It All Together
Stepwise Variable Selection
The Rapid Model Development Framework
Applying the Rapid Development Framework Tutorial

III Grouping Methods
Ward’s Method of Cluster Analysis and Principal Components
Summarizing Data Sets
Ward’s Method of Cluster Analysis
Principal Components
Ward’s Method Tutorial

K-Centroids Partitioning Cluster Analysis
How K-Centroid Clustering Works
Cluster Types and the Nature of Customer Segments
Methods to Assess Cluster Structure
K-Centroids Clustering Tutorial

Bibliography
Index


Dr. Daniel S. Putler is a Data Artisan in Residence at Alteryx, a business intelligence/analytics software company.

Dr. Robert E. Krider is a professor of marketing in the Beedie School of Business at Simon Fraser University. He has also taught in Hong Kong, Shanghai, Portugal, and Germany. His research tackles questions of customer and competitor behavior in retailing and media industries.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.