Buch, Englisch, 318 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 449 g
Mete Sozen's Works on Earthquake Engineering
Buch, Englisch, 318 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 449 g
ISBN: 978-1-032-25178-3
Verlag: CRC Press
Features:
- Provides the reader with a clear understanding of the essential features that control the seismic response of RC buildings
- Describes a simple (perhaps the simplest) seismic design method available
- Includes the underlying hard data to support and explain the methods described
- Presents decades of work by one of the most prolific and brilliant civil engineers in the United States in the second half of the 20th century
Drift-Driven Design of Buildings serves as a useful guide for civil and structural engineering students for self-study or in-class learning, as well as instructors and practicing engineers.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
PART I: EARTHQUAKE DEMAND. Chapter 1. General Description of Earthquake Demand. Chapter 2. A Way to Define and Use Earthquake Demand. Chapter 3. Response Spectra. PART II: NOTABLE WORKS. Chapter 4. Introduction. Chapter 5. The Response of RC to Displacement Reversals (The Work of Takeda). Chapter 6. The Substitute-Structure Method (The Work of Shibata). Chapter 7. The Origin of Drift Driven Design (A View to Drift Control). Chapter 8. Nonlinear v. Linear Response (The Work of Shimazaki). Chapter 9. The Effects of Previous Earthquakes (The Work of Cecen). Chapter 10. Why Should Drift Instead of Strength Drive Design for Earthquake Resistance?. Chapter 11. A Historical Review of The Development of Drift-Driven Design (A Thread Through Time). Chapter 12. Drift Estimation (The Velocity of Displacement). Chapter 13. Limiting Drift to Protect the Investment (The Work of Algan). Chapter 14. Hassan Index to Evaluate Seismic Vulnerability. Chapter 15. The Simplest Building Code. Chapter 16. Earthquake Response of Buildings with Robust Walls. PART III: CLASS NOTES. Chapter 17. Historical Notes on Earthquakes. Chapter 18. Measures of Earthquake Intensity. Chapter 19. Estimation of Period using the Rayleigh Method. Chapter 20. A Note on the Strength and Stiffness of Reinforced Concrete Walls with Low Aspect Ratios. Chapter 21. Measured Building Periods. Chapter 22. Limit Analysis for Base-Shear Strength Estimation. Chapter 23. Estimating Drift Demand. Chapter 24. Detailing and Drift Capacity. Chapter 25. An Example. Conclusion. References. Appendix A. On STRENGTH. Appendix B. REPORT on DRIFT SEAOSC. Appendix C. RICHTER on MAGNITUDE. Appendix D. REVIEW of STRUCTURAL DYNAMICS.