Puig | Frobenius Categories versus Brauer Blocks | Buch | 978-3-7643-9997-9 | sack.de

Buch, Englisch, Band 274, 498 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 922 g

Reihe: Progress in Mathematics

Puig

Frobenius Categories versus Brauer Blocks

The Grothendieck Group of the Frobenius Category of a Brauer Block
2009
ISBN: 978-3-7643-9997-9
Verlag: Springer

The Grothendieck Group of the Frobenius Category of a Brauer Block

Buch, Englisch, Band 274, 498 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 922 g

Reihe: Progress in Mathematics

ISBN: 978-3-7643-9997-9
Verlag: Springer


I1 More than one hundred years ago, Georg Frobenius [26] proved his remarkable theorem a?rming that, for a primep and a ?nite groupG, if the quotient of the normalizer by the centralizer of anyp-subgroup ofG is a p-group then, up to a normal subgroup of order prime top,G is ap-group. Ofcourse,itwouldbeananachronismtopretendthatFrobenius,when doing this theorem, was thinking the category — notedF in the sequel — G where the objects are thep-subgroups ofG and the morphisms are the group homomorphisms between them which are induced by theG-conjugation. Yet Frobenius’ hypothesis is truly meaningful in this category. I2 Fifty years ago, John Thompson [57] built his seminal proof of the nilpotencyoftheso-called Frobeniuskernelofa FrobeniusgroupGwithar- ments — at that time completely new — which might be rewritten in terms ofF; indeed, some time later, following these kind of arguments, George G Glauberman [27] proved that, under some — rather strong — hypothesis onG, the normalizerNofasuitablenontrivial p-subgroup ofG controls fusion inG, which amounts to saying that the inclusionN?G induces an ? equivalence of categoriesF =F.

Puig Frobenius Categories versus Brauer Blocks jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


General notation and quoted results.- Frobenius P-categories: the first definition.- The Frobenius P-category of a block.- Nilcentralized, selfcentralizing and intersected objects in Frobenius P-categories.- Alperin fusions in Frobenius P-categories.- Exterior quotient of a Frobenius P-category over the selfcentralizing objects.- Nilcentralized and selfcentralizing Brauer pairs in blocks.- Decompositions for Dade P-algebras.- Polarizations for Dade P-algebras.- A gluing theorem for Dade P-algebras.- The nilcentralized chain k*-functor of a block.- Quotients and normal subcategories in Frobenius P-categories.- The hyperfocal subcategory of a Frobenius P-category.- The Grothendieck groups of a Frobenius P-category.- Reduction results for Grothendieck groups.- The local-global question: reduction to the simple groups.- Localities associated with a Frobenius P-category.- The localizers in a Frobenius P-category.- Solvability for Frobenius P-categories.- A perfect F-locality from a perfect Fsc -locality.- Frobenius P-categories: the second definition.- The basic F-locality.- Narrowing the basic Fsc-locality.- Looking for a perfect Fsc-locality.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.