E-Book, Englisch, Band Volume 13, 699 Seiten, Web PDF
Reihe: IFAC Symposia Series
Puente / Nemes Information Control Problems in Manufacturing Technology 1989
1. Auflage 2014
ISBN: 978-1-4832-9883-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected papers from the 6th IFAC/IFIP/IFORS/IMACS Symposium, Madrid, Spain, 26-29 September 1989
E-Book, Englisch, Band Volume 13, 699 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9883-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The Symposium presented and discussed the latest research on new theories and advanced applications of automatic systems, which are developed for manufacturing technology or are applicable to advanced manufacturing systems. The topics included computer integrated manufacturing, simulation and the increasingly important areas of artificial intelligence and expert systems, and applied them to the broad spectrum of problems that the modern manufacturing engineer is likely to encounter in the design and application of increasingly complex automatic systems.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Information Control Problems in Manufacturing Technology 1989;4
3;Copyright Page;5
4;Table of Contents;10
5;6TH IFAC SYMPOSIUM ON INFORMATION CONTROL PROBLEMS IN MANUFACTURING TECHNOLOGY 1989;6
6;PREFACE;8
7;CHAPTER 1.EDUCATION IN MANUFACTURING AND ROBOTICS;20
7.1;Introductory statement by P.Kopacek;20
7.2;Statement by L.Nemes;20
7.3;Statement by J.Paiuk;21
7.4;Statement by J.Scrimgeour;21
7.5;Summary by P.Kopacek;22
8;CHAPTER 2.
INDUSTRY AUTOMATION;24
8.1;INTRODUCTION.;24
8.2;NODULAR DESIGN OF AUTOMATION SYSTEMS;24
8.3;SENSOR INTEGRATION. (Ch. Bühler).;25
8.4;INFORMATION INTEGRATION (A. WELLS).;26
8.5;COMMENTS by J.J. ROWLAND;26
8.6;HUMAN-MACHINE INTERACTION (A. EL MHAMEDI).;26
8.7;CONCLUSIONS;27
9;CHAPTER 3.
CONTRIBUTION OF EUREKA PROJECTS TO INNOVATION IN MANUFACTURING TECHNOLOGY;28
9.1;1. THE EUREKA INITIATIVE;29
9.2;2. EUREKA PROJECTS;30
9.3;3. EUREKA PROJECTS RELATED TO MANUFACTURING;33
9.4;4. THE FAMOS UMBRELLA PROJECT AND ITS INDIVIDUAL GENERATED PROJECTS;33
9.5;5. A PRELIMINARY ANALYSIS OF FAMOS PROJECTS;35
9.6;6. CONCLUSIONS;38
9.7;ACKNOWLEDGEMENTS;39
10;CHAPTER 4.
GRAPHICAL SIMULATION OF COMPLIANT MOTION ROBOT TASKS;40
10.1;INTRODUCTION;40
10.2;A COMPLIANT MOTION SIMULATION SYSTEM: MAIN COMPONENTS;41
10.3;CONTACT FORCE CALCULATION;41
10.4;CONTACT FORCE TRANSFORMATION;43
10.5;FORCE CONTROL;43
10.6;VELOCITY INTEGRATION;44
10.7;EXAMPLE: INSERTION IN 2D;44
10.8;CONCLUSION;44
10.9;REFERENCES;45
11;CHAPTER 5.
A STUDY ON DISTRIBUTED SIMULATION FOR FLEXIBLE MANUFACTURING SYSTEMS;46
11.1;INTRODUCTION;46
11.2;DISTRIBUTED SIMULATION MODEL;46
11.3;SYSTEM CONFIGURATION;48
11.4;SYNCHRONIZATION;48
11.5;CART CONTROL;50
11.6;AN EXAMPLE;51
11.7;CONCLUSION;51
11.8;REFERENCES;51
12;CHAPTER 6.
AN APPROACH TO THE FOOTWEAR ASSEMBLY AUTOMATIC SYSTEM;52
12.1;INTRODUCTION;52
12.2;SYSTEM SPECIFICATIONS;52
12.3;DESCRIPTION OF THE SYSTEM;52
12.4;SYSTEM SIMULATION;53
12.5;CONCLUSION;54
12.6;ACKNOWLEDGEMENTS;54
12.7;REFERENCES;54
13;CHAPTER 7.
AN INTELLIGENT PLANNER FOR ASSEMBLY PROCESS PLANNING;58
13.1;1. AI PLANNING AND PROCESS PLANNING;58
13.2;2. DEVELOPMENT OF THE SYSTEM;59
13.3;3. INTERFACE WITH DESIGN;61
13.4;4. COMMENTS ON THE APPROACH;61
13.5;5. CONCLUSIONS;61
13.6;REFERENCES;62
14;CHAPTER 8.
ARTIFICIAL INTELLIGENCE TECHNIQUES ON A DISTRIBUTED CONTROL ENVIRONMENT;64
14.1;INTRODUCTION;64
14.2;CONCLUSIONS;67
14.3;REFERENCES;68
15;CHAPTER 9.
AN ABSTRACT DATA TYPE FOR FAULT TOLERANT CONTROL ALGORITHMS IN MANUFACTURING SYSTEMS;70
15.1;Abstract;70
15.2;1. Introduction;70
15.3;2. Background.;70
15.4;3. General Recursive System.;70
15.5;4. Definition of the Mission Pool Data Structure.;72
15.6;5. Control Algorithms.;73
15.7;6. Further Research.;73
15.8;7. Conclusions.;74
15.9;8. References.;74
16;CHAPTER 10.
HOW TO USE THE MANUFACTURING INFORMATION SYSTEMS AS A COMPETITIVE WEAPON;76
16.1;INTRODUCTION;76
16.2;THE CFS APPROACH;76
16.3;FEATURES OF THE I.T. ON A LEAD-TIME REDUCTION ENVIRONMENT;78
16.4;CONCLUSIONS;79
16.5;REFERENCES;80
17;CHAPTER 11.
HANDLING OBJECTS OF UNKNOWN CHARACTERISTICS;82
17.1;INTRODUCTION.;82
17.2;MAGNETORESISTIVE SENSORS;82
17.3;MAGNETORESISTORS IN TACTILE SENSING;82
17.4;FORCE AND SLIP DETECTION;82
17.5;SENSOR CHARACTERISTICS AND PERFORMANCE;83
17.6;SIGNAL ACQUISITION AND PROCESSING;84
17.7;CONCLUSIONS.;86
17.8;ACKNOWLEDGEMENT;86
17.9;REFERENCES;86
18;CHAPTER 12. EXPERIMENTAL RESULTS ON IR SENSOR SIMULATION;88
18.1;1 Introduction;88
18.2;2 IR Sensor Model;88
18.3;3 Simplified IR Sensor Model;89
18.4;4 Modelling E , S and R;90
18.5;5 Simulation Approach;91
18.6;6 Implementation Details;91
18.7;7 Experimental results;91
18.8;8 Computational considerations;92
18.9;9 Conclusions and FYiture Work;92
18.10;10 Acknowledgements;92
18.11;11 References;92
19;CHAPTER 13.
AN EXPERT SYSTEM APPLICATION IN MANUFACTURING;94
19.1;INTRODUCTION;94
19.2;EXPERT SYSTEM USE;94
19.3;WELDING EXPERT SYSTEM ROLE;95
19.4;ROBOTIZED WORK CELL;95
19.5;CONCLUSIONS;96
19.6;REFERENCES;96
19.7;PROGRAM LISTING;97
20;CHAPTER 14.
PILOT EXPERT SYSTEM (ROBEX) FOR CONCEPTUAL DESIGN OF INDUSTRIAL MANUFACTURING TASK-BASED ROBOTS;98
20.1;INTRODUCTION;98
20.2;THE STRUCTURE OF ROBEXP SYSTEM;98
20.3;IR MANUFACTURING TASKS;98
20.4;THE CALCULATION OF ORIENTATION MASSES AND TORQUES;99
20.5;THE SELECTION OF IR FUNCTIONAL SUBSYSTEM COMPONENTS;99
20.6;CONCLUSION;101
20.7;REFERENCES;101
21;CHAPTER 15.
DESIGN OF DECISION-MAKING ENGINE IN KNOWLEDGE ASSISTED PROCESS PLANNING SYSTEM (KAPPS);104
21.1;INTRODUCTION;104
21.2;THE ROLE OF KNOWLEDGE AND PROPOSED KNOWLEDGE ASSISTED PROCESS PLANNING SYSTEM;104
21.3;DECISION-MAKING ENGINE IN KAPPS;105
21.4;BASIC PROCEDURE IN DECISION MAKING ENGINE;105
21.5;CASE STUDIES;108
21.6;CONCLUSIONS;109
21.7;REFERENCES;109
22;CHAPTER 16.
SCLES: STRATEGIC CONTROL LEVEL EXPERT SYSTEM FOR INDUSTRIAL ROBOTS;110
22.1;INTRODUCTION;110
22.2;STRATEGIC CONTROL LEVEL;110
22.3;SCLES DESCRIPTION;111
22.4;AN APPLICATION EXAMPLE;113
22.5;CONCLUSIONS;113
22.6;REFERENCES;114
23;CHAPTER 17.
MEASUREMENT OF INFORMATION SYSTEMS INTEGRATION;116
23.1;INTRODUCTION;116
23.2;STRUCTURED SYSTEMS ANALYSIS;116
23.3;INTEGRATION;119
23.4;USE OF CASE TOOLS;120
23.5;DISCUSSION OF RESULTS;120
23.6;CONCLUSION;121
23.7;REFERENCES;121
24;CHAPTER 18.
CONCEPTS FOR THE REALIZATION OF DISTRIBUTED, FAULT TOLERANT CIM STRUCTURES;122
24.1;INTRODUCTION;122
24.2;FUNCTIONAL ANALYSIS AND MODELLING OF THE INDUSTRIAL PRODUCTION;123
24.3;DERIVATION OF REQUIREMENTS OF THE COMMUNICATION SYSTEM;124
24.4;BERKOM;125
24.5;DISTRIBUTED CIM STRUCTURES;126
24.6;CONCLUSION;126
24.7;REFERENCES;127
24.8;ACKNOWLEDGEMENT;127
25;CHAPTER 19.
MANUFACTURING AUTOMATION AND PROTOTYPING FOR PRINTED WIRING BOARDS;132
25.1;INTRODUCTION;132
25.2;BACKGROUND;132
25.3;AUTOMATED PWB ASSEMBLY;133
25.4;CONCLUSIONS;135
26;CHAPTER 20.
AUTOMATED WAREHOUSING AND MANUFACTURING PILOT PLANT: HARDWARE AND SOFTWARE;138
26.1;INTRODUCTION;138
26.2;GENERAL DESCRIPTION;139
26.3;SOFTWARE DISTRIBUTION m i;142
26.4;CONCLUSIONS;143
27;CHAPTER 21.
FACTORY AUTOMATION: PRODUCTION SUBSYSTEM MANAGEMENT;144
27.1;INTRODUCTION;144
27.2;THE SOFTWARE SYSTEM MODEL;144
27.3;SOFTWARE SYSTEM DESIGN;145
27.4;AUTOMATING A FACTORY. EXAMPLE;145
27.5;IMPLEMENTATION;147
27.6;CONCLUSIONS;147
27.7;REFERENCES;147
28;CHAPTER 22.
MANUFACTURING MODELLING AND MULTILEVELS EVALUATION INTEGRATED HUMAN ASPECTS;148
28.1;INTRODUCTION;148
28.2;PRODUCTION SYSTEM EVALUATION AND HUMAN ASPECTS;149
28.3;QUALITATIVE EVALUATION;150
28.4;MULTI-LEVEL EVALUATION APPROACH;151
28.5;CONCLUSION;153
28.6;ACKNOWLEDGEMENTS;153
28.7;REFERENCES;153
29;CHAPTER 23.
DEVELOPING INDUSTRIAL SYSTEMS ACCORDING TO THE PROCESS INTERACTION APPROACH;156
29.1;INTRODUCTION;156
29.2;PROCESSES AND INTERACTIONS;156
29.3;THE SPECIFICATION OF SYSTEMS;157
29.4;THE VALIDATION OF SYSTEMS;159
29.5;THE IMPLEMENTATION OF SYSTEMS;160
29.6;CONCLUSION;160
29.7;REFERENCES;161
30;CHAPTER 24.
KINEMATICS OF A THREE DEGREE-OFFREEDOM, TWO LINKS LIGHTWEIGHT FLEXIBLE ARM;162
30.1;1 INTRODUCTION;162
30.2;2 Kinematic Equations;163
30.3;3 Application to the 3-d.o.f. 2-links Case;164
30.4;4 Computation Methods;164
30.5;5 Conclusions;165
30.6;REFERENCES;166
31;CHAPTER 25.
A CRITERION FOR THE OPTIMAL PLACEMENT OF ROBOTIC MANIPULATORS;168
31.1;INTRODUCTION;168
31.2;FORMULATION;168
31.3;SOLUTION TO THE OPTIMAL PLACEMENT PROBLEM;170
31.4;EXAMPLE;170
31.5;CONCLUSIONS;171
31.6;ACKNOWLEDGMENTS;172
31.7;REFERENCES;172
32;CHAPTER 26.
OFF-LINE PROGRAMMING ENVIRONMENT FOR ROBOTIC APPLICATIONS;174
32.1;INTRODUCTION;174
32.2;MRL;174
32.3;PROGRAMMING ENVIRONMENT;176
32.4;CONCLUSION;177
32.5;REFERENCES;177
33;CHAPTER 27.
COMPUTER AIDED LAYOUT PLANNING FOR ROBOT ASSEMBLY APPLICATIONS;178
33.1;INTRODUCTION;178
33.2;REQUIREMENTS TO LAYOUT PLANNING FROM ASSEMBLY;178
33.3;PRODUCT ORIENTED APPROACH FOR PLANNING AN ASSEMBLY CELL;179
33.4;ASSEMBLY OPERATION PLANNING;179
33.5;GROSS LAYOUT PLANNING;180
33.6;DETAIL LAYOUT PLANNING;180
33.7;PLANNING DATA MODEL;181
33.8;REALIZATION;181
33.9;CONCLUSIONS;181
33.10;REFERENCES;181
33.11;ACKNOWLEDGEMENT;181
34;CHAPTER 28.
UPON ONE CONTROL PROBLEM FOR SEMIAUTOMATED PRODUCTION SYSTEMS;184
34.1;INTRODUCTION;184
34.2;THE GENERAL PROBLEM'S FORMULATION;185
34.3;THE SUBPROBLEM;185
34.4;THE SUBPROBLEM'S SOLUTION;185
34.5;APPENDIX;186
34.6;REFERENCES;187
35;CHAPTER 29.
THOR, A CAPP SYSTEM FOR TURNING WITH A HIGH GRADE OF INTERACTIVE IMPLEMENTATION;190
35.1;INTRODUCTION;190
35.2;THE BASIS OF THE THOR SYSTEM;191
35.3;MAN-MACHINE INTERFACE;191
35.4;DESCRIPTION OF THE THOR MODULES;192
35.5;TECHNOLOGICAL DATABASE;194
35.6;FINAL REMARKS;194
35.7;REFERENCES;196
36;CHAPTER 30.
SCHEDULING EDITOR FOR PRODUCTION MANAGEMENT WITH HUMAN-COMPUTER COOPERATIVE SYSTEMS;198
36.1;INTRODUCTION;198
36.2;SCHEDULING PROBLEM OF MANUFACTURING SYSTEMS;198
36.3;PETRI NET MODELLING;199
36.4;DUAL LOOP OF SIMULATION AND EDITING;199
36.5;SIMULATION;199
36.6;EVALUATION;200
36.7;EDITING FUNCTION AND REALIZATION;200
36.8;CONSTRAINT PROPAGATION;200
36.9;AN ILLUSTRATIVE EXAMPLE;200
36.10;CONCLUSION;201
36.11;REFERENCES;201
37;CHAPTER 31.
GRID MODELISATION FOR AUTONOMOUS ROBOT;204
37.1;INTRODUCTION;204
37.2;MODELISATION;204
37.3;PATH PLANNING;206
37.4;CONCLUSION;207
37.5;REFERENCES;207
38;CHAPTER 32.
MODELLING, CONTROL AND SIMULATION OF FLEXIBLE ASSEMBLY SYSTEMS;210
38.1;INTRODUCTION - ASSEMBLY ENVIRONMENT;210
38.2;CONTROL ORIENTED MODEL FOR ASSEMBLY SYSTEMS;210
38.3;THE "ON TIME" AND "AT THE SAME TIME" CONTROLS;211
38.4;VALIDATION OF MODEL STRUCTURE AND CONTROL POLICIES;212
38.5;AN INDUSTRIAL APPLICATION;212
38.6;CONCLUSION;213
38.7;REFERENCES;214
38.8;APPENDIX 1;214
38.9;APPENDIX 2;215
39;CHAPTER 33.
AN INTERACTIVE SIMULATION MODEL FOR MULTIPARAMETER OPTIMIZATION OF CUTTING PROCESSES IN FMS;216
39.1;INTRODUCTION;216
39.2;LolaCut SOFTWARE PACKAGE;216
39.3;OPTIMISATION DIALOGUE;218
39.4;CONCLUSION;221
39.5;REFERENCES;221
40;CHAPTER 34.
SIMULATION OF A FLEXIBLE MANUFACTURING SYSTEM (FMS) FOR FABRICATION OF BONDED STRUCTURES;222
40.1;Abstract;222
40.2;Introduction;222
40.3;System Software;223
40.4;Plant Layout;223
40.5;FLOWCHART OF COMPUTER PACKAGE;223
40.6;SIMULATION OF THE LATHE AND THE MANIPULATING ARM;224
40.7;Conclusion;224
40.8;Acknowledgement;224
40.9;References;224
40.10;APPENDIX: OPTIMIZATION OF CUTTING PARAMETERS;225
41;CHAPTER 35.
DEVELOPMENT OF UNMANNED MACHINE TOOLS IN CZECHOSLOVAKIA;230
41.1;Unmanned Technology - Basic Terms and Scope of Applications;230
41.2;Required Features of Unmanned Machine Tools and Their Components;230
41.3;Development of Machine Tools in Czechoslovakia;231
41.4;Conclusion;231
42;CHAPTER 36.
PC's IN CAM EDUCATION;234
42.1;INTRODUCTION;234
42.2;EDUCATION FOR CAM;234
42.3;EDUCATIONAL TOOLS;235
42.4;CONCLUSION;237
42.5;REFERENCES;237
43;CHAPTER 37.
CIM: ON A NEW THEORETICAL APPROACH OF INTEGRATION;238
43.1;INTRODUCTION . THE CONCEPT OF CIM;238
43.2;THE USUAL MAIN DIRECTIONS OF INTEGRATION;238
43.3;SYSTEM - THEORETICAL APPROACH;240
43.4;REFERENCES;243
44;CHAPTER 38.
CONSTRUCTING PLANTWIDE MANAGEMENT AND INFORMATION SYSTEM;246
44.1;INTRODUCTION;246
44.2;PLANTWIDE SYSTEM;246
44.3;ESSENTIAL COMPONENTS;247
44.4;REALISED MILLWIDE SYSTEM;247
44.5;KEY TECHNOLOGY;249
44.6;SYSTEM BENEFITS;251
44.7;KEY FACTORS FOR SUCCESS;251
44.8;CONCLUSION;251
44.9;ACKNOWLEDGEMENT;251
44.10;REFERENCES;251
45;CHAPTER 39.
GROUPING PARTS TO REDUCE THE COMPLEXITY OF ASSEMBLY SEQUENCE PLANNING;252
45.1;1 INTRODUCTION;252
45.2;2 THEORETICAL EFFECTS OF CLUSTERING;252
45.3;3 A FRAMEWORK FOR CLUSTER RECOGNITION;253
45.4;4 AN EXAMPLE OF CLUSTER DETECTION;254
45.5;5 A PROTOTYPE IMPLEMENTATION;255
45.6;6 CONCLUSIONS AND FUTURE WORK;255
45.7;REFERENCES;256
46;CHAPTER 40.
PARAMETER ADAPTIVE CONTROL STRATEGY FOR THE CYLINDRICAL SURFACE GRINDING PROCESS;258
46.1;INTRODUCTION;258
46.2;MODELING.;259
46.3;IDENTIFICATION OF PROCESS PARAMETERS.;260
46.4;CONTROL STRATEGY.;260
46.5;EXPERIMENTS IPENTIHOITION RESULTS .;261
46.6;SIMULATION RESULTS.;262
46.7;CONCLUSIONS.;263
46.8;ACKNOWLEDGEMENTS.;263
46.9;REFERENCES.;263
47;CHAPTER 41.
REAL TIME QUALITY FEEDBACK IN A FLEXIBLE MILLING CELL;264
47.1;INTRODUCTION;264
47.2;PILOT FLEXIBLE HILLING CELL;264
47.3;TOOL CORRECTIONS SETTING;265
47.4;DIMENSION AND WEAR ESTIMATION;266
47.5;PART MODEL INSTANCE;267
47.6;SIMULATION;267
47.7;EXPERIMENTATION;267
47.8;CONCLUSION;267
47.9;REFERENCES;267
48;CHAPTER 42.
AN APPROACH TO THE SIMULATION FOR FMS DESIGN AND COST ANALYSIS;270
48.1;INTRODUCTION;270
48.2;THE BASIC CONCEPT OF THE FMS TECHNO-ECONOMIC ANALYSIS SYSTEM;270
48.3;THE EXAMPLE OF DEVELOPED MODEL'S APPLICATION;272
48.4;CONCLUSION;273
48.5;REFERENCES;274
49;CHAPTER 43.
TASK EXECUTION SIMULATION OF ROBOT APPLICATION PROGRAMS;276
49.1;INTRODUCTION;276
49.2;THE PROBLEM OF PROGRAM VERIFICATION IN TASK EXECUTION SIMULATION;276
49.3;AN APPROACH FOR TASK EXECUTION SIMULATION;277
49.4;SIMULATION MODELS;277
49.5;TIME VARIANT KINEMATICS;278
49.6;COMMUNICATION MODEL;278
49.7;SIMULATION NETWORK;279
49.8;INTERNAL STRUCTURE OF THE SIMULATOR'S KERNEL;280
49.9;ENVIRONMENT OF THE SIMULATOR'S KERNEL;280
49.10;SUMMARY;280
49.11;REFFERENCES;280
50;CHAPTER 44.
COMPUTER-AIDED PROGRAMMING TOOL FOR ROBOTICS;284
50.1;INTRODUCTION;284
50.2;SYSTEM ORGANIZATION;284
50.3;MODELLING;285
50.4;PROGRAMMING;286
50.5;SIMULATION;287
50.6;CONCLUSION;288
50.7;REFERENCES;289
51;CHAPTER 45.
MODELLING INDUSTRIAL CHEMICAL PLANTS: SIMULATION VIA STELLA™;290
51.1;INTRODUCTION;290
51.2;METHODS OF ANALYSIS;290
51.3;THE ANALYTIC APPROACH;291
51.4;STELLA™ AS A DEVELOPMENT TOOL;292
51.5;THE STELLA™ MODEL;292
51.6;CONCLUDING REMARKS;293
51.7;REFERENCES;293
51.8;ACKNOWLEDGEMENT;293
52;CHAPTER 46.
KNOWLEDGE-BASED ORDER SPECIFIC NC DRILLING SYSTEM;294
52.1;1. INTRODUCTION;294
52.2;ARCHITECTURE OF THE KNOWLEDGE BASED SYSTEMS (S);295
52.3;CONCLUSION;296
52.4;BIBLIOGRAPHY;296
53;CHAPTER 47.
A KNOWLEDGE BASED ENVIRONMENT FOR ARTIFICIAL INTELLIGENCE MODELING OF INDUSTRIAL PROBLEMS: PRELIMINARY CONCEPTS;300
53.1;INTRODUCTION;300
53.2;THE PROBLEMS OF THE TRADITIONAL KNOWLEDGE ENGINEERING APPROACH;300
53.3;THE QUALITATIVE SIMULATION APPROACH;301
53.4;DEEP DIAGNOSTIC;301
53.5;AN APPROACH TO A KNOWLEDGE REPRESENTATION ENVIRONMENT FOR INDUSTRIAL MODELING;302
53.6;CONCLUSIONS;303
53.7;REFERENCES;303
54;CHAPTER 48.
KNOWLEDGE BASED SYSTEMS FOR ENGINEERING DESIGN AND MANUFACTURE;306
54.1;ABSTRACT;306
54.2;1. INTRODUCTION;306
54.3;2. THE STRUCTURE OF EXPERT SYSTEMS;306
54.4;3. THE KNOWLEDGE BASE;306
54.5;4. THE INFERENCE MECHANISM;308
54.6;5. KNOWLEDGE-BASED SYSTEMS FOR ENGINEERING DESIGN AND MANUFACTURE;309
54.7;CONCLUSION;312
54.8;ACKNOHLEDGEMENT;312
54.9;REFEFERENCES;312
55;CHAPTER 49.
AUTOMATIC FINE-MOTION PLANNING BASED ON POSITION/FORCE STATES;320
55.1;INTRODUCTION;320
55.2;TASK POSITION AND FORCE MODEL;320
55.3;UNCERTAINTY;321
55.4;POSITION/FORCE STATES;321
55.5;STATE TRANSITION OPERATORS;322
55.6;FINE-MOTION PLANNING AND EXECUTION;322
55.7;SIMPLE CASE EXAMPLE;323
55.8;CONCLUSIONS;323
55.9;REFERENCES;323
55.10;APPENDIX A: OPERATORS DETERMINATION;324
56;CHAPTER 50.
INTELLIGENT CONTROL FOR DESIGN-BASED AUTOMATED ASSEMBLY;328
56.1;INTRODUCTION;328
56.2;DESIGN-BASED ASSEMBLY;328
56.3;COMMUNICATION;329
56.4;INTELLIGENT CONTROL;329
56.5;HARDWARE FOR IMPLEMENTATION AND RESULTS;330
56.6;CONCULSIONS;331
56.7;ACKNOWLEDGMENT;331
56.8;REFERENCES;331
57;CHAPTER 51.
A COMPUTER INTEGRATED MANUFACTURING SYSTEM FOR SHEET METAL FORMING;334
57.1;INTRODUCTION;334
57.2;MAIN OBJECTIVES OF REALIZATION OF FLEXIBLE MANUFACTURING SYSTEM;334
57.3;GENERAL CONCEPT OF THE SYSTEM;335
57.4;GENERAL STRUCTURE OF SHEET METAL MANUFACTURING SYSTEM;336
57.5;CONCLUSIONS;339
57.6;REFERENCES;339
58;CHAPTER 52.
FACCS: THE FLEXIBLE ASSEMBLY CELL CONTROL SYSTEM;340
58.1;INTRODUCTION;340
58.2;WORKFLOW CONTROL;340
58.3;RESOURCE FLOW CONTROL;341
58.4;BINDING OF RESOURCE VARIABLES;343
58.5;CONCLUSION;343
58.6;REFERENCES;343
58.7;APPENDIX 1 A GRAPHIC REPRESENTATION OF PRODUCT DEFINITIONS;344
59;CHAPTER 53.
THE SCHEDULER'S INFORMATION SYSTEM: WHAT IS GOING ON? INSIGHTS FOR AUTOMATED ENVIRONMENTS;346
59.1;INTRODUCTION;346
59.2;PROBLEM FORMULATION;347
59.3;SOLUTION FRAMEWORK;347
59.4;CONCLUSION;349
59.5;REFERENCES;349
60;CHAPTER 54.
OPTIMIZATION TECHNIQUES APPLIED TO JOB-SHOP SCHEDULING;352
60.1;1.0 Introduction;352
60.2;2.0 Classification Of Scheduling Problems;352
60.3;3.0 Initial Feasible solution;352
60.4;4.0 Optimality Test;353
60.5;6.0 Alternative starting time of 2nd;353
60.6;7.0 Conclusion;354
60.7;References;354
61;CHAPTER 55.
PRODUCTION CHANGE MULTICRITERIA OPTIMIZATION WITH DUE-DATE CONSTRAINTS;356
61.1;INTRODUCTION;356
61.2;STATEMENT OF THE PROBLEM;356
61.3;METHODOLOGY;356
61.4;CONCLUSION;359
61.5;REFERENCES;359
62;CHAPTER 56.
CELLULAR FACILITY DESIGN MADE EASY;360
62.1;INTRODUCTION;360
62.2;THE GROUPING PROBLEM;360
62.3;PROCESS FLOW ANALYSIS (PFA) PRELIMINARIES;361
62.4;PFA TECHNIQUE;361
62.5;PFA RESULTS;362
62.6;CELL BUILDING;362
62.7;LOAD ALLOCATION;362
62.8;SIMULATION;363
62.9;IMPLEMENTATION EXPERIENCE;363
62.10;COMPLETE FACILITY DESIGN;364
62.11;CONCLUSION;364
62.12;References;364
62.13;Acknowledgements;364
63;CHAPTER 57.
PROTOTYPING OF F.M.S. FROM THE DESIGN OF A PREGRAPH BASED ON SOME EXTENDED PETRI-NETS;366
63.1;INTRODUCTION;366
63.2;THE C.A.S.P.A.I.M. PLAN;366
63.3;ELABORATION OF THE PREGRAPH;367
63.4;PROTOTYPING OF FMS;369
63.5;CONCLUSION;371
63.6;REFERENCES;371
64;CHAPTER 58.
AN ULTRASONIC PHASED-ARRAY-SENSOR FOR ROBOT ENVIRONMENT MODELLING AND FAST DETECTION OF COLLISION POSSIBILITY;372
64.1;INTRODUCTION;372
64.2;PHASED-ARRAY-SENSOR;372
64.3;3-D ENVIRONMENT–MODULATION;373
64.4;FAST COLLISION POSSIBILITY DETECTION;375
64.5;CONCLUSION;376
64.6;REFERENCES;376
65;CHAPTER 59.
MODULAR SIMULATION MODEL OF ROBOT CELLS;378
65.1;INTRODUCTION;378
65.2;PRESENT SITUATION;378
65.3;REQUIREMENTS FOR SIMULATION SYSTEM;378
65.4;WORKING OUT A DEVELOPMENT METHOD;379
65.5;DESIGN OF THE SPECIAL PROGRAMS USING A LOGIC MODEL;379
65.6;CONTROL RULE AND PROGRAM FLOW;380
65.7;APPLICATION;381
65.8;CONCLUSION;381
65.9;REFERENCES;382
66;CHAPTER 60.
AUTOMATED SEWING WITH DIRECT DRIVE MANIPULATOR;384
66.1;INTRODUCTION;384
66.2;3-D SEWING SYSTEM;384
66.3;SMOOTH TRACE MOTION;385
66.4;EXPERIMENTS;387
66.5;CONCLUSIONS;388
66.6;ACKNOWLEDGMENT;388
66.7;REFERENCES;388
67;CHAPTER 61.
A MODULAR APPROACH TO SENSOR INTEGRATION IN ROBOTIC ASSEMBLY;390
67.1;INTRODUCTION;390
67.2;BACKGROUND;390
67.3;TASK SUPERVISORS AND SENSING;391
67.4;DESIGN USING FUNCTIONAL MODULARITY;392
67.5;PROPERTIES OF VIRTUAL SENSORS;393
67.6;A SENSORY GRIPPER AS A TEST-BED;393
67.7;CONCLUSIONS;393
67.8;ACKNOWLEDGEMENTS;394
67.9;REFERENCES;394
68;CHAPTER 62.
FORCE INTERACTION AND CONTROL OF TWO-ARM MANIPULATORS;396
68.1;INTRCDXTICN;396
68.2;PROBLEM STATEMENT;396
68.3;CONTROL SCHBME;397
68.4;FORCE MODEL;397
68.5;CONCLUSIONS;399
68.6;REFERENCES;399
69;CHAPTER 63.
A NEW ENERGY CONTROL SYSTEM USING REAL TIME EXPERT SYSTEMS;400
69.1;INTRODUCTION;400
69.2;APPLYING REAL TIME EXPERT SYSTEMS;400
69.3;THE ENERGY FLOW OF KEIHIN WORKS;400
69.4;THE CONCENTRATED ENERGY CONTROL SYSTEM;401
69.5;THE ENERGY OPERATION DECISION SYSTEM;401
69.6;THE LD-GAS DISTRIBUTION CONTROL SYSTEM;402
69.7;EFFECTS OF THE NEW SYSTEM;402
69.8;CONCLUSION;403
69.9;REFERENCES;403
70;CHAPTER 64.
PRODUCTION SCHEDULING USING AI TECHNIQUES;406
70.1;INTRODUCTION.;406
70.2;ALGORITHM.;407
70.3;RESULTS.;409
70.4;BIBLIOGRAPHY;410
71;CHAPTER 65.
PRODUCTION SCHEDULING AND SHOPFLOOR CONTROL USING A RELATIONAL DATA BASE MANAGEMENT SYSTEM;412
71.1;INTRODUCTION;412
71.2;RELATIONAL DATA BASE MANAGEMENT SYSTEMS;412
71.3;SOFTWARE DEVELOPMENT;413
71.4;SUMMARY;416
71.5;REFERENCES;417
71.6;Acknowledgements;417
72;CHAPTER 66.
A PRODUCT INFORMATION SYSTEM TO IMPROVE THE YIELD OF A MANUFACTURING PROCESS;418
72.1;INTRODUCTION;418
72.2;DEVELOPMENT OF SHOPFLOOR INFORMATION SYSTEMS;418
72.3;SCRIPT SYSTEM OVERVIEW;418
72.4;SYSTEM HARDWARE ARCHITECTURE;420
72.5;SYSTEM SOFTWARE ARCHITECTURE;421
72.6;CONCLUSIONS;421
73;CHAPTER 67.
COMBINING TIME-OUT AND NONDETERMINISM IN REAL-TIME PROGRAMMING;424
73.1;INTRODUCTION;424
73.2;PROBLEM DEFINITION;424
73.3;COMBINING FORMS;425
73.4;EXAMPLES;426
73.5;DISCUSSION;428
73.6;REFERENCES;428
74;CHAPTER 68.
ROBOT CONTROL IN MANUFACTURING: COMBINING REFERENCE INFORMATION WITH ONLINE SENSOR CORRECTION;430
74.1;INTRODUCTION;430
74.2;NONLINEAR DECOUPLING AND CONTROL WITH CHANGING REFERENCE PATH;430
74.3;SIMULATION RESULTS;434
74.4;CONCLUSION;435
74.5;ACKNOWLEDGEMENT;436
74.6;REFERENCES;436
75;CHAPTER 69.
DATA STRUCTURES FOR COMPUTER-AIDED ASSEMBLY PLANNING: A SURVEY;438
75.1;INTRODUCTION;438
75.2;ASSEMBLY MODELIZATION : STATE OF THE ART;438
75.3;CRIF/WTCM APPROACH;441
75.4;CONCLUSIONS;443
75.5;FURTHER WORK;443
75.6;REFERENCES;443
76;CHAPTER 70.
LOGICAL STRUCTURE OF TOOLING SYSTEM DESIGN — FUNDAMENTALS OF TOOLING SELECTION EXPERT SYSTEM;444
76.1;INTRODUCTION;444
76.2;TOOLING SYSTEM TECHNOLOGICAL RECOGNITION;444
76.3;AN EXAMPLE OF THE TOOLING COMPOSITION FOR A TYPE FORM AND A HYPOTHETICAL PART;446
76.4;THE COMPOSITION OF TOOLING SYSTEMS OVER THE SELECTED GROUP OF REAL PARTS (AN EXAMPLE FROM INDUSTRY);449
76.5;CONCLUSION;449
76.6;REFERENCES;449
77;CHAPTER 71.
AUTOMATIC GENERATION OF MANUFACTURING CONTROL INSTRUCTIONS — AN EXPERT SYSTEMS APPROACH;450
77.1;INTRODUCTION;450
77.2;NEED FOR MANUFACTURING CONTROL LANGUAGE;450
77.3;HIERARCHY OF MANUFACTURING TASK;450
77.4;FORMAT OF BILL OF OPERATIONS;452
77.5;METHOD OF GENERATING A BILL OF OPERATIONS;453
77.6;DATA FOR THE BILL OF OPERATIONS GENERATION (BOG);453
77.7;BOG EXPERT SYSTEM;453
77.8;BOG EXPERT SYSTEM OUTPUT;454
77.9;BOG EXPERT SYSTEM STRUCTURE;455
77.10;REFERENCE;455
78;CHAPTER 72.
A DECENTRALIZED ON-LINE SCHEDULING STRATEGY FOR FMS;456
78.1;1. INTRODUCTION;456
78.2;2. MATHEMATICS OF FMS SCHEDULING;457
78.3;3. DECENTRALIZED SCHEDULING STRATEGY;458
78.4;5. CONCLUSIONS;461
78.5;Acknowledgements;461
78.6;6. REFERENCES;461
79;CHAPTER 73.
INTERACTIVE SCHEDULING FOR A HUMANOPERATED FLEXIBLE MACHINING CELL;464
79.1;INTRODUCTION;464
79.2;BACKGROUND;465
79.3;SYSTEM OVERVIEW;465
79.4;EXAMPLES AND CONCLUSIONS;466
79.5;ACKNOWLEDGEMENTS;467
79.6;REFERENCES;467
80;CHAPTER 74. REACTIVE SCHEDULING OF A FLEXIBLE MANUFACTURING CELL;470
80.1;INTRODUCTION;470
80.2;DEFINITION;470
80.3;DESCRIPTION;471
80.4;SCHEDULER;471
80.5;CONCLUSIONS;473
80.6;ACKNOWLEDGMENTS;473
80.7;REFERENCES;473
81;CHAPTER 75.
SIMULATING A FACTORY PRODUCTION PROCESS WITH AUTOMATED GUIDED VEHICLES;474
81.1;INTRODUCTION;474
81.2;PROGRAM PACKAGE DESCRIPTION;475
81.3;PROGRAM I;475
81.4;PROGRAM II;475
81.5;PROGRAM III;476
81.6;ANALYSIS OF SIMULATION RESULTS;477
81.7;CONCLUSION;478
81.8;REFERENCES;478
81.9;INTRODUCTION;474
81.10;PROGRAM PACKAGE DESCRIPTION;475
82;CHAPTER 76. CONTRIBUTION TO COMPUTER-AIDED DESIGN OF FLEXIBLE ASSEMBLY SYSTEMS;480
82.1;INTRODUCTION;480
82.2;ASSEMBLY PLANS DETERMINATION;480
82.3;ASSEMBLY SYSTEM DESIGN AND SIMULATION;482
82.4;CONCLUSION;482
82.5;REFERENCES;483
83;CHAPTER 77. DEEP KNOWLEDGE FOR CONFIGURATION AND DIAGNOSIS IN A TECHNICAL ENVIRONMENT;484
83.1;INTRODUCTION;484
83.2;DEEP KNOWLEDGE FOR CONFIGURATION AND DIAGNOSIS;484
83.3;APPLICATION DOMAIN: A SYNCHRONIZED PRODUCTION PROCESS;485
83.4;MODEL DESIGN;486
83.5;CONCLUSION;489
83.6;REFERENCES;489
84;CHAPTER 78.
A KNOWLEDGE REPRESENTATION ENVIRONMENT FOR MANUFACTURING CONTROL SYSTEMS DESIGN AND PROTOTYPING;490
84.1;INTRODUCTION;490
84.2;KRON;490
84.3;MIKRON;491
84.4;DYNAMIC PERSPECTIVE;492
84.5;CONCLUSIONS;493
84.6;AKNOWLELJEMENTS;494
84.7;REFERENCES;494
85;CHAPTER 79. CIM IN CHOP- AND SPRAY-TECHNOLOGY FOR PRODUCTION IN GLASS-FIBER;496
85.1;COMPOSITE MATERIALS: CHARACTERISTICS;496
85.2;FEASIBILITY STUDY;496
85.3;DEVELOPMENT OF THE PROJECT;496
85.4;THE PRODUCTION CYCLE;497
85.5;INSERTION ON LINE AND START-UP PROBLEMS;498
85.6;SYSTEM ARCHITECTURE;498
85.7;SOFTWARE: CONTROL AND REGULATION STRUCTURE;498
85.8;WATER-JET FINISHING;499
85.9;FURTHER DEVELOPMENTS;499
85.10;CONCLUSION;500
85.11;REFERENCES;500
86;CHAPTER 80.
MAXIMIZING PRODUCTIVITY FROM MACHINING CELLS;502
87;CHAPTER 81.
TRAJECTORY PLANNING METHOD FOR MOBILE ROBOTS;506
87.1;INTRODUCTION;506
87.2;MOBILE ROBOT MODELLING;507
87.3;GENERATION OF THE TRAJECTORY OF UNION BETWEEN TWO NODES, (Trajectories in collisionfree space);507
87.4;GRAPH EXPANSION METHOD. GENERATION OF INTERMEDIATE NODES.;509
87.5;RESULTS. GRAPH-SEARCH;510
87.6;CONCLUSIONS;511
87.7;REFERENCES;511
88;CHAPTER 82.
MOTION CONTROL OF A N AUTONOMOUS VEHICLE;512
88.1;1. INTRODUCTION;512
88.2;2. MODEL;513
88.3;3. CONTROL PROBLEM;514
88.4;4. SIMULATION;515
88.5;5. CONCLUSION;515
88.6;6. REFERENCES;515
89;CHAPTER 83. A RECURSIVE ALGORITHM FOR PATH PLANNING BETWEEN MONOTONE CHAINS;518
89.1;1. INTRODUCTION.;518
89.2;2. STATEMENT OF THE PROBLEM.;518
89.3;3. THE ALGORITHMS.;520
89.4;CONCLUSION.;521
89.5;REFERENCES;522
90;CHAPTER 84.
INTERPOLATION ALGORITHMS FOR GENERAL NON-PARAMETRIC AND PARAMETRIC CURVES BY MATHEMATICAL PROGRAMMING;524
90.1;INTRODUCTION;524
90.2;EIGHT - POINT INTERPOLATION BY MATHEMATICAL PROGRAMMING;524
90.3;THE ALGORITHM;525
90.4;EXTENSION TO PARAMETRIC CURVES;526
90.5;RESULTS;526
90.6;CONCLUSION;526
90.7;REFERENCES;527
91;CHAPTER 85. RETROFITTING A CNC MACHINING CENTER WITH A MAGNETIC SPINDLE FOR TOOL PATH ERROR CONTROL;530
91.1;INTRODUCTION;530
91.2;TOOL PATH ERROR;530
91.3;MAGNETIC SPINDLE;531
91.4;MECHANICAL INTERFACING;531
91.5;ELECTRICAL INTERFACING AND CONTROL;532
91.6;EXPERIMENTAL VALIDATION;533
91.7;FUTURE WORK;533
91.8;ACKNOWLEDGEMENT;534
91.9;REFERENCES;534
92;CHAPTER 86. ON A METHOD OF CUTTING ARBITRARY PLANE SHAPE BY USING A SMALL DRILL AND A PERSONAL COMPUTER;536
92.1;INTRODUCTION;536
92.2;OUTLINE OF THE APPARATUS;536
92.3;PROGRAM OF THE PERSONAL COMPUTER;537
92.4;PROCEDURE FOR OPERATION;539
92.5;CONCLUSIONS;539
92.6;ACKNOWLEDGMENTS;539
92.7;REFERENCES;539
93;CHAPTER 87. DYNAMIC DATA STRUCTURES FOR MANUFACTU RING INFORMATION;540
93.1;INTRODUCTION;540
93.2;DATA CLASSES IN MANUFACTURING INFORMATION;540
93.3;DEFINING THE DIRECTED ACYCLIC GRAPH STRUCTURE;541
93.4;DATA STRUCTURE OPERATIONS;542
93.5;CONCEPTS IN THE DYNAMIC SUPPORT OF DESIGN TOOLS;543
93.6;COMPUTER ASSISTED MANUFACTURING DESIGN TOOLS;543
93.7;FURTHER EXTENSIONS;545
93.8;SUMMARY;545
93.9;REFERENCES;545
93.10;ACKNOWLEDGEMENTS;545
94;CHAPTER 88. DATABASE SUPPORT IN WORKCELL DESIGN;546
94.1;INTRODUCTION;546
94.2;ENGINEERING DATABASES;547
94.3;DATABASE IMPLEMENTATION;547
94.4;CONCLUSIONS;548
94.5;REFERENCES;549
95;CHAPTER 89. INTEGRATED MANUFACTURING USING COORDINATE MEASURING MACHINES AND STATISTICAL PROCESS CONTROL SOFTWARE;552
95.1;INTRODUCTION;552
95.2;INTEGRATION PRINCIPLES FOR A CMM;552
95.3;STATISTICAL PROCESS CONTROL ASPECTS;553
95.4;INTEGRATION OF CAD SYSTEMS;556
95.5;CONCLUSIONS;556
96;CHAPTER 90.
DYNAMIC PILOTING POLICY FOR FLEXIBLE ASSEMBLY LINES;558
96.1;INTRODUCTION;558
96.2;PRODUCT ANALYSIS;559
96.3;ORDERS OF ASSEMBLY OPERATIONS;559
96.4;DESCRIPTION OF THE F.A.L.;560
96.5;MODELIZATION OF PILOTING PROBLEM;561
96.6;HEURISTIC ALGORITHM FOR DYNAMIC PILOTING;562
96.7;CONCLUSION;562
96.8;REFERENCES;563
97;CHAPTER 91.
MODELLING AND SIMULATION OF LARGESCALE MULTIPARAMETER COMPUTER AIDED DYNAMICAL CONTROL SYSTEMS;564
97.1;1. INTRODUCTIONS;564
97.2;2. NECESSARY CONDITIONS FOR THE EXISTENCE OF A SOLUTIOH OF THE RICCATI MATRIX DIFFERENTIAL EQUATION (1);569
97.3;3. SOLUTIONS OF RICCATI MATRIX DIFFERENTIAL EQUATIOMS AMD OPTIMAL COMTROL THEORY AMD TRAMSPORT THEORY;568
97.4;4. EXAMPLE (THBOREM 3.1). A NECESSARY AND SUFFICIENT CONDITIONS THAT THE NONLINEAR MATRIX DIFFERENTIAL EQUATION;566
97.5;5. SUMMARY;565
97.6;REFERENCES;565
98;CHAPTER 92.
THE SIMULATION LANGUAGE SIMIAN FOR DECISION SUPPORT SYSTEMS I N PRODUCTION PLANNING;572
98.1;1. Introduction to SIMIAN;572
98.2;2. Problems in simulation of production systems;573
98.3;3. Machine Shop Example;575
98.4;4, Conclusion;577
98.5;5. References;577
99;CHAPTER 93. A KNOWLEDGE-BASED APPROACH TO PROCESS PLANNING: A CASE STUDY;578
99.1;INTRODUCTION;578
99.2;COMPUTER-AIDED PROCESS PLANNING;579
99.3;DEVELOPING EXCAST;579
99.4;COMPUTER SOFTWARE;581
99.5;CONCLUSIONS;583
99.6;REFERENCES;583
100;CHAPTER 94. AN ADAPTATION OF THE BLACKBOARD MODEL FOR THE MODELLING OF THE KNOW-HOW OF THE EXPERT IN AN AUTOMATION ENGINEERING WORKSTATION;584
100.1;1/General context;584
100.2;2/Adaptation of the À;585
100.3;CONCLUSION;588
100.4;references;589
101;CHAPTER 95.
A N INTEGRATED CAD/CAM SYSTEM FOR A TEXTILE INDUSTRY WITH KNITTING MACHINERIES;590
101.1;INTRODUCTION;590
101.2;SYSTEM ARCHITECTURE;591
101.3;SYSTEM SOFTWARE AND FUNCTIONS;593
101.4;A LANGUAGE FOR PROGRAMMING KNITTING MACHINES;595
101.5;CONCLUSIONS;596
101.6;REFERENCES;596
102;CHAPTER 96.
A N INTEGRATED APPROACH TO SHOPFLOOR INFORMATION SYSTEMS — A SUCCESSFUL IMPLEMENTATION IN A MODERN MANUFACTURING PROCESS;598
102.1;INTRODUCTION;598
102.2;PROCESS INFORMATION SYSTEMS;599
102.3;REAL TIME DATA LOGGING SYSTEM;600
102.4;EQUIPMENT INFORMATION SYSTEM;601
102.5;SCREEN INFORMATION PROCESSING AND TRANSACTIONS SYSTEM (SCRIPT);601
102.6;CONCLUSIONS;601
103;CHAPTER 97.
CIM CONCEPT FOR T H E PRODUCTION OF WELDING TRANSFORMERS;602
103.1;INTRODUCTION;602
103.2;THE SPECIAL CASE - WELDING TRANSFORMERS;602
103.3;ROBOT ASSEMBLING OF THE PRIMARY PART;603
103.4;CONTROL PROBLEMS;604
103.5;CONCLUSION;605
103.6;REFERENCES;605
104;CHAPTER 98. CAM SYSTEMS WITH EXTREME REQUIREMENTS OF QUALITY ASSURANCE — TWO CASE STUDIES;606
104.1;ASSEMBLY PROTOCOL FOR SAFETYCRITICAL PARTS AND DEVICES;606
104.2;TWO CASE STUDIES OF ADVANCED CAM-SYSTEMS;606
104.3;ASSEMBLY PROTOCOL DATA IN THE TWO CASE STUDIES;607
104.4;INTEGRATING OTHER TEST RESULTS INTO THE ASSEMBLY PROTOCOL;608
104.5;CONCLUSION;608
104.6;REFERENCES;609
105;CHAPTER 99. APPLICATION OF A NOVEL FORCE-TORQUE SENSOR IN ADVANCED ROBOT ASSEMBLY AND MACHINING TASKS;612
105.1;INTRODUCTION;612
105.2;FEATURES OF THE 6-COMPONENT FORCE-TORQUE SENSOR;612
105.3;ARCHITECTURE FOR THE INTEGRATION OF SENSORS AND ROBOT CONTROLS;613
105.4;ADAPTATION AND APPLICATION OF THE FORCE-TORQUE SENSOR IN ROBOTIC SYSTEMS;613
105.5;CONCLUSION;614
105.6;REFERENCES;614
106;CHAPTER 100.
A CAD BASED VISION SYSTEM FOR IDENTIFYING INDUSTRIAL WORKPIECES;618
106.1;1 Introduction;618
106.2;2 The CAD modeling and the structure transfomer module;618
106.3;3 Initial hypothesis module;619
106.4;4 Position and orientation module;621
106.5;5 Verification module;621
106.6;6 Conclusions;622
106.7;7 References;623
107;CHAPTER 101.
ASSEMBLY PERFORMANCE OF A ROBOTIC VIBRATORY WRIST;624
107.1;INTRODUCTION;624
107.2;VIBRATORY ASSEMBLY WRIST;624
107.3;VIBRATORY INSERTION EXPERIMENTS;625
107.4;EXPERIMENTAL RESULTS AND DISCUSSIONS;625
107.5;CONCLUSIONS;626
107.6;REFERENCES;627
108;CHAPTER 102 .SENSOR-BASED ROBOTS IN COMPUTERAIDED MANUFACTURING;628
108.1;INTRODUCTION;628
108.2;CONCEPTION OF A MODULAR, SENSOR-AIDED WELDING ROBOT;628
108.3;SYSTEM STRUCTURE, TASKS AND COUPLING (INTERFACING);629
108.4;CONCLUSION;630
108.5;REFERENCES;630
109;CHAPTER 103. COMPUTER AIDED PLANNING OF ASSEMBLY SYSTEMS;632
109.1;INTRODUCTION;632
109.2;POTENTIAL OF INFORMATION TECHNOLOGY;632
109.3;ASSEMBLY PLANNING SYSTEM;633
109.4;OPEN ARCHITECTURE;635
109.5;REFERENCES;637
110;CHAPTER 104. INTEGRATION OF A MACHINE VISION SYSTEM IN A FLEXIBLE WORKSHOP FITTED OUT WITH CAD/CAM TOOLS;638
110.1;INTRODUCTION;638
110.2;CAD-VISION CONNECTING;639
110.3;SOFTWARE INTERFACING;640
110.4;APPLICATION;641
110.5;CONCLUSION;641
110.6;REFERENCES;642
111;CHAPTER 105.
NEUTRAL INTERFACES THAT WORK: APPLICATION FOR ROBOT WELDING;644
111.1;INTRODUCTION;644
111.2;LAYOUT OF THE DEMONSTRATION FACILITY;645
111.3;HARDWARE ARCHITECTURE;646
111.4;A CAD GEOMETRY INTERFACE THAT WORKS;647
111.5;CONCLUSIONS;648
111.6;ACKNOWLEDGEMENTS;648
111.7;REFERENCES;648
112;CHAPTER 106.
ISOMATIC PLUS — LOW COST DISTRIBUTED CONTROL SYSTEM;650
112.1;INTRODUCTION;650
112.2;SYSTEM REQUIREMENTS;650
112.3;SYSTEM IMPLEMENTATION;651
112.4;CONCLUSION;652
112.5;REFERENCES;653
113;CHAPTER 107.
SEMANTIC NETWORK PROCESSING SYSTEM USED FOR SIMULATION, FAST PROTOTYPING A N D CONFIGURATION OF LARGE SOFTWARE SYSTEMS;656
113.1;INTRODUCTION;656
113.2;TOY EXAMPLE;656
113.3;SENET;656
113.4;SYMBOLIC LEVEL SIMULATION;658
113.5;FAST POTOTYPING;659
113.6;CONFIGURATION DATA FOR THE ON-LINE SOFTWARE;659
113.7;CONCLUSION;659
113.8;ACKNOWLEDGEMENTS;659
113.9;REFERENCES;659
114;CHAPTER 108.
A NEW CONTROL STRATEGY BASED ON THE CONCEPT OF N O N INTEGER DERIVATION: APPLICATION IN ROBOT CONTROL;660
114.1;ABSTRACT;660
114.2;KEYWORDS;660
114.3;I-INTRODUCTION;660
114.4;II-REPRESENTATION OF ROBUSTNESS IN TIME DOMAIN;661
114.5;III-FROM THE ROBUSTNESS OF STABILITY DEGREE IN NATURE TO A NEW ROBUST CONTROL STRATEGY : THE NON INTEGER APPROACH OF THE CRONE CONTROL;661
114.6;IV-REPRESENTATION OF ROBUSTNESS IN FREQUENCY DOMAIN : OPEN LOOP FREQUENCY TEMPLATE;661
114.7;V. NATURAL FREQUENCY AND DAMPING FACTOR;662
114.8;VI-RESONANCE FREQUENCY AND RESONANCE FACTOR;662
114.9;VII-FREQUENCY PLACEMENT OF THE TEMPLATE;663
114.10;VIII-APPLICATION IN MANIPULATOR CONTROL;664
114.11;IX-SIMULATION OF THE CONTROL;666
114.12;X-CONCLUSION;666
114.13;REFERENCES;667
115;CHAPTER 109.
POWER OPTIMIZATION OF MULTI-FLUID TRANSPORTATION SYSTEMS;668
115.1;INTRODUCTION;668
115.2;PROBLEM DESCRIPTION;669
115.3;OPTIMIZATION ALGORITHM;671
115.4;APPLICATION TO OIL PIPELINES;672
115.5;CONCLUSIONS;673
115.6;ACKNOWLEDGEMENT;673
115.7;REFERENCES;673
116;CHAPTER 110. VISUAL FEEDBACK APPLIED TO AN AUTONOMOUS VEHICLE;674
116.1;Abstract;674
116.2;Keywords:;674
116.3;Introduction. Foundations of Visual Feedback;674
116.4;Hierarchy of visual and non • visual controls;674
116.5;Identification of the robot dynamics.;675
116.6;Conclusions;676
116.7;References;676
117;CHAPTER 111.
A PRODUCTION SYSTEM FOR AGVS CONTROL;678
117.1;1. INTRODUCTION;678
117.2;2. PROBLEM OVERVIEW;678
117.3;3. SYSTEM MODELLING;679
117.4;4. CONTROL KNOWLEDGE ORGANIZATION;680
117.5;5. ASSIGNMENT RULES;681
117.6;6. CONCLUSIONS;682
117.7;7. REFERENCES;682
118;CHAPTER 112. OPTIMAL DESIGN OF BUFFER STORAGE IN AN ASSEMBLY LINE;684
118.1;INTRODUCTION;684
118.2;BASIC MODELS;684
118.3;PA FOR THE BUFFER STORAGE;685
118.4;SIMULATION;687
118.5;CONCLUSION;687
118.6;REFERENCES;687
119;CHAPTER 113. COMBINED SCHEDULING AND ROUTING IN DISCRETE MANUFACTURING SYSTEMS;690
119.1;INTRODUCTION;690
119.2;THE PHYSICAL MODEL AND THE LOCAL DECISION PROBLEM;691
119.3;THE LOCAL SCHEDULING ROUTING STRATEGY;692
119.4;COORDINATION OF LOCAL STRATEGIES BY MEANS OF AGGREGATE INFORMATION;693
119.5;CONCLUDING REMARKS;694
119.6;REFERENCES;694
120;CHAPTER 114.
PROPAGATION OF SPATIAL UNCERTAINTIES BETWEEN ASSEMBLY PRIMITIVES;696
120.1;1 Introduction;696
120.2;2 Modeling the Assembly Cell;696
120.3;3 Network Reduction;696
120.4;4 Judging the Known Critical Relation;697
120.5;5 An Application: Sensor Action Planning;698
120.6;6 Implementation and Tests;698
120.7;7 Conclusions;698
120.8;A Derivation of the Jacobian for Compounding;699
120.9;References;699
121;AUTHOR INDEX;702
122;KEYWORD INDEX;706
123;SYMPOSIA VOLUMES;710
124;WORKSHOP VOLUMES;711