Puñal Ostos | Optimizing 802.11 Wireless Communications with Machine Learning | Buch | 978-3-8440-3607-7 | www2.sack.de

Buch, Englisch, Band 10, 248 Seiten, PB, Format (B × H): 148 mm x 210 mm, Gewicht: 372 g

Reihe: Reports on Communications and Distributed Systems

Puñal Ostos

Optimizing 802.11 Wireless Communications with Machine Learning


1. Auflage 2015
ISBN: 978-3-8440-3607-7
Verlag: Shaker

Buch, Englisch, Band 10, 248 Seiten, PB, Format (B × H): 148 mm x 210 mm, Gewicht: 372 g

Reihe: Reports on Communications and Distributed Systems

ISBN: 978-3-8440-3607-7
Verlag: Shaker


Wireless communication systems are becoming increasingly complex to cope with demands for better performance. The former, combined with the unpredictable behavior of the wireless channel, contribute to the creation of intractable networks that can hardly be characterized by means of accurate yet scalable analytical models.

In this work, we discuss on the suitability of machine learning to perform this task. In particular, we present several learning approaches that address relevant performance issues in the context of prominent WLAN systems. With the goal of achieving high throughput 802.11ac defines very wide channels, which increases the perceived frequency variability of the channel and eventually degrades the communication performance. We develop a lightweight learning-based resource allocation scheme that counteracts and exploits the frequency variability. Vehicular communications require reliable message delivery in the context of safety applications. However, we observe that jamming attacks compromise road safety by impairing the communication of 802.11p devices. Motivated by this finding, we develop a jamming detection tool that learns the behavior of commodity devices, in order to later detect jamming attacks in vehicular scenarios. Rate adaptation provides means for the support of infotainment applications. In vehicular environments this is a challenging task, due to the fast changing channel. We develop a learning algorithm that identifies signal propagation patterns buried in empirical data and selects the rate according to predicted future channel conditions.

Puñal Ostos Optimizing 802.11 Wireless Communications with Machine Learning jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.