Pruppacher / Klett | Microphysics of Clouds and Precipitation | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 18, 954 Seiten

Reihe: Atmospheric and Oceanographic Sciences Library

Pruppacher / Klett Microphysics of Clouds and Precipitation


2. Auflage 2010
ISBN: 978-0-306-48100-0
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 18, 954 Seiten

Reihe: Atmospheric and Oceanographic Sciences Library

ISBN: 978-0-306-48100-0
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



Cloud physics has achieved such a voluminous literature over the past few decades that a significant quantitative study of the entire field would prove unwieldy. This book concentrates on one major aspect: cloud microphysics, which involves the processes that lead to the formation of individual cloud and precipitation particles. Common practice has shown that one may distinguish among the following addi­ tional major aspects: cloud dynamics, which is concerned with the physics respon­ sible for the macroscopic features of clouds; cloud electricity, which deals with the electrical structure of clouds and the electrification processes of cloud and precipi­ tation particles; and cloud optics and radar meteorology, which describe the effects of electromagnetic waves interacting with clouds and precipitation. Another field intimately related to cloud physics is atmospheric chemistry, which involves the chemical composition ofthe atmosphere and the life cycle and characteristics of its gaseous and particulate constituents. In view of the natural interdependence of the various aspects of cloud physics, the subject of microphysics cannot be discussed very meaningfully out of context. Therefore, we have found it necessary to touch briefly upon a few simple and basic concepts of cloud dynamics and thermodynamics, and to provide an account of the major characteristics of atmospheric aerosol particles. We have also included a separate chapter on some of the effects of electric fields and charges on the precipitation-forming processes.

Pruppacher / Klett Microphysics of Clouds and Precipitation jetzt bestellen!

Weitere Infos & Material


1;TABLE OF CONTENTS;6
2;PREFACE TO THE FIRST EDITION;15
3;PREFACE TO THE SECOND EDITION;17
4;CHAPTER 1 HISTORICAL REVIEW;22
5;CHAPTER 2 MICROSTRUCTURE OF ATMOSPHERIC CLOUDS ANDPRECIPITATION;31
5.1;2.1 Microstructure of Clouds and Precipitation Consisting ofWater Drops;31
5.1.1;2.1.1 THE RELATIVE HUMIDITY INSIDE CLOUDS AND FOGS;31
5.1.2;2.1.2 MICROSTRUCTURE OF FOGS;33
5.1.3;2.1.3 MICROSTRUCTURE OF CLOUDS;36
5.1.4;2.1.4 FORMULATIONS FOR THE DROP SIZE DISTRIBUTIONS IN CLOUDSAND FOGS;45
5.1.5;2.1.5 THE MEAN DISTANCE BETWEEN DROPS IN CLOUDS AND FOGS;48
5.1.6;2.1.6 MICROSTRUCTURE OF RAIN;51
5.2;2.2 Microstructure of Clouds and Precipitation Consisting ofIce Particles;59
5.2.1;2.2.1 SHAPE, DIMENSIONS, BULK DENSITY AND NUMBER CONCENTRATIONOF SNOW CRYSTALS;61
5.2.2;2.2.2 SHAPE, DIMENSIONS, BULK DENSITY, AND NUMBER CONCENTRATIONOF SNOWFLAKES, GRAUPEL, AND HAILSTONES;79
6;CHAPTER 3 THE STRUCTURE OF WATER SUBSTANCE;95
6.1;3.1 Structure of an Isolated Water Molecule;95
6.2;3.2 Structure of Water Vapor;98
6.3;3.3 Structure of Ice;99
6.4;3.4 Structure of Water and Aqueous Solutions;107
6.4.1;3.4.1 STRUCTURE OF WATER;107
6.4.2;3.4.2 STRUCTURE OF AQUEOUS SOLUTIONS;119
7;CHAPTER 4 EQUILIBRIUM BETWEEN WATER VAPOR, WATER, AQUEOUSSOLUTIONS, AND ICE IN BULK;121
7.1;4.1 Useful Thermodynamic Relations;121
7.2;4.2 General Conditions for Equilibrium;123
7.3;4.3 Phase Rule for Bulk Phases;125
7.4;4.4 Ideal versus Real Behavior of Dry Air, Water Vapor, andMoist Air;126
7.5;4.5 Chemical Potential of Water Vapor in Humid Air, and ofWater in Aqueous Solutions;128
7.6;4.6 Equilibrium Between an Aqueous Salt Solution andWater Vapor;130
7.7;4.7 Latent Heat of Phase Change and its TemperatureVariation;136
7.8;4.8 Clausius-Clapeyron Equation;137
7.9;4.9 Equilibrium Between an Aqueous Salt Solution and Ice;144
8;CHAPTER 5 SURFACE PROPERTIES OF WATER SUBSTANCE;147
8.1;5.1 Surface Tension;147
8.2;5.2 Equilibrium Conditions;148
8.3;5.3 Phase Rule for Systems with Curved Interfaces;149
8.4;5.4 Water-Vapor Interface;150
8.4.1;5.4.1 EFFECT OF TEMPERATURE ON THE SURFACE TENSION OF WATER;151
8.4.2;5.4.2 SURFACE TENSION OF AQUEOUS SALT SOLUTIONS;151
8.5;5.5 Angle of Contact;156
8.6;5.6 Adsorption of Water Vapor on Solid Surfaces;158
8.7;5.7 Ice-Vapor Interface;166
8.7.1;5.7.1 SURFACE ENERGY OF ICE;166
8.7.2;5.7.2 WULFF'S THEOREM;168
8.8;5.8 Adsorption of Reactive Gases on Ice Surfaces;176
8.9;5.9 Ice-Water Interface;178
8.10;5.10 Ice Aqueous Solution Interface;182
8.11;5.11 Condensation, Deposition, and ThermalAccommodation Coefficients;184
9;CHAPTER 6 EQUILIBRIUM BEHAVIOR OF CLOUD DROPS AND ICEPARTICLES;188
9.1;6.1 General Equilibrium Relation for Two Phases Separatedby a Curved Interface;188
9.2;6.2 Effect of Curvature on Latent Heat of Phase Change;189
9.3;6.3 Generalized Clausius-Clapeyron Equation;190
9.4;6.4 Equilibrium Between a Pure Water Drop and Pure WaterVapor or Humid Air;191
9.5;6.5 Equilibrium Between an Aqueous Solution Drop andHumid Air;193
9.6;6.6 Equilibrium Between Humid Air and an AqueousSolution Drop Containing a Solid Insoluble Substance;196
9.7;6.7 Equilibrium Conditions for Ice Particles;199
9.8;6.8 Experimental Verification;205
10;CHAPTER 7 HOMOGENEOUS NUCLEATION;212
10.1;7.1 Homogeneous Nucleation of Water Drops and IceCrystals from Water Vapor;213
10.1.1;7.1.1 EQUILIBRIUM POPULATION OF EMBRYOS AND ENERGY OF EMBRYOFORMATION;213
10.1.2;7.1.2 THE NUCLEATION RATE J;220
10.1.3;7.1.3 EXPERIMENTAL VERIFICATION;225
10.2;7.2 Homogeneous Nucleation of Ice in Supercooled Water;226
10.2.1;7.2.1 THE NUCLEATION RATE J;226
10.2.2;7.2.2 THE ENERGY OF GERM FORMATION;228
10.2.3;7.2.3 THE MOLAR ACTIVATION ENERGY ~g*;230
11;CHAPTER 8 THE ATMOSPHERIC AEROSOL AND TRACE GASES;237
11.1;8.1 Gaseous Constituents of the Atmosphere;237
11.2;8.2 Atmospheric Aerosol Particles (AP);246
11.2.1;8.2.1 FORMATION OF AEROSOL PARTICLES BY GAS TO PARTICLECONVERSION (GPC);247
11.2.2;8.2.2 FORMATION OF AEROSOL PARTICLES BY DROP PARTICLE CONVERSION(DPC);254
11.2.3;8.2.3 FORMATION OF AEROSOL PARTICLES BY BULK TO PARTICLECONVERSION (BPC);261
11.2.4;8.2.4 AP FROM EXTRATERRE8TRIAL SOURCES;268
11.2.5;8.2.5 RATE OF EMISSION OF PARTICULATE MATTER INTO THE ATMOSPHERE;269
11.2.6;8.2.6 RESIDENCE TIME OF AP;269
11.2.7;8.2.7 WATER-SOLUBLE FRACTION OF AP;272
11.2.8;8.2.8 TOTAL MASS AND NUMBER CONCENTRATION OF AP;273
11.2.9;8.2.9 SIZE DISTRIBUTION OF AP;282
11.2.10;8.2.10 VERTICAL VARIATION OF THE NUMBER AND MASS CONCENTRATION;291
12;CHAPTER 9 HETEROGENEOUS NUCLEATION;308
12.1;9.1 Cloud Condensation Nuclei (CCN);308
12.1.1;9.1.1 NUMBER CONCENTRATION AND CHEMICAL COMPOSITION OF CCN;308
12.1.2;9.1.2 MODE OF ACTION OF WATER-SOLUBLE AND MIXED CCN;317
12.1.3;9.1.3 NUCLEATION OF DROPS ON WATER-INSOLUBLE CCN;318
12.2;9.2 Ice Forming Nuclei (IN);330
12.2.1;9.2.1 NUMBER CONCENTRATION OF IN;330
12.2.2;9.2.2 SOURCES AND CHEMICAL COMPOSITION OF IN;338
12.2.3;9.2.3 THE MAIN REQUIREMENTS FOR IN;347
12.2.4;9.2.4 THEORY OF HETEROGENEOUS ICE NUCLEATION;362
12.2.5;9.2.5 HETEROGENEOUS FREEZING OF SUPERCOOLED WATER DROPS;368
12.2.6;9.2.6 DISCREPANCY BETWEEN THE CONCENTRATIONS OF IN AND THECONCENTRATION OF ICE PARTICLES;376
13;CHAPTER 10 HYDRODYNAMICS OF SINGLE CLOUD AND PRECIPITATION PARTICLES;382
13.1;10.1 Basic Governing Equations;382
13.2;10.2 Flow Past a Rigid Sphere;385
13.2.1;10.2.1 CLASSIFICATION OF FLOWS ACCORDING TO REYNOLDS NUMBER;385
13.2.2;10.2.2 STEADY, AXISYMMETRIC FLOW;387
13.2.3;10.2.3 THE FALL BEHAVIOR OF RIGID SPHERES;405
13.2.4;10.2.4 NON-STEADY THREE-DIMENSIONAL FLOW;405
13.3;10.3 Hydrodynamic Behavior of Water Drops in Air;406
13.3.1;10.3.1 INTERNAL CIRCULATION IN DROPS;407
13.3.2;10.3.2 DROP SHAPE;414
13.3.3;10.3.3 DROP OSCILLATION;421
13.3.4;10.3.4 FALL BEHAVIOR OF DROPS;430
13.3.5;10.3.5 DROP INSTABILITY AND BREAKUP;431
13.3.6;10.3.6 TERMINAL VELOCITY OF WATER DROPS IN AIR;436
13.4;10.4 Hydrodynamic Behavior of Disks, Oblate Spheroids, andCylinders;442
13.4.1;10.4.1 CIRCULAR DISKS AND OBLATE SPHEROIDS;443
13.4.2;10.4.2 CIRCULAR CYLINDERS;449
13.5;10.5 Hydrodynamic Behavior of Snow Crystals, Snow Flakes,Graupel and Hailstones;454
13.5.1;10.5.1 FLOW FIELD AND DRAG;454
13.5.2;10.5.2 FALL VELOCITY;459
13.5.3;10.5.3 FALL PATTERN;465
14;CHAPTER 11 MECHANICS OF THE ATMOSPHERIC AEROSOL;468
14.1;11.1 Brownian Motion of Aerosol Particles;468
14.2;11.2 Particle Diffusion;470
14.3;11.3 Mobility and Drift Velocity;471
14.4;11.4 Sedimentation and the Vertical Distribution of AerosolParticles;472
14.5;11.5 Brownian Coagulation of Aerosol Particles;475
14.6;11.6 Laminar Shear, Turbulence, and GravitationalCoagulation;484
14.6.1;11.6.1 COAGULATION IN LAMINAR SHEAR FLOW;484
14.6.2;11.6.2 COAGULATION IN TURBULENT FLOW;486
14.6.3;11.6.3 GRAVITATIONAL COAGULATION;490
14.7;11.7 Explanation for the Observed Size Distributions of theAtmospheric Aerosol;493
14.7.1;11.7.1 QUASI-STATIONARY DISTRIBUTIONS (QSD);493
14.7.2;11.7.2 SELF-PRESERVING DISTRIBUTIONS (SPD);495
14.7.3;11.7.3 QUASI-STATIONARY SELF-PRESERVING DISTRIBUTIONS;501
14.7.4;11.7.4 STATISTICAL DISTRIBUTIONS;502
14.7.5;11.7.5 POWER LAW SOLUTIONS FOR A SOURCE-ENHANCED AEROSOL;503
15;CHAPTER 12 COOLING OF MOIST AIR;506
15.1;12.1 Water in the Atmosphere;506
15.2;12.2 Isobaric Cooling;509
15.3;12.3 Adiabatic Cooling of Unsaturated Air;509
15.4;12.4 The Thermodynamic Wetbulb Temperature;511
15.5;12.5 Lifting to Saturation and Beyond;511
15.6;12.6 Adiabatic Cooling of Saturated Air;513
15.7;12.7 Cooling with Entrainment;513
15.8;12.8 The Concept of Entrainment;514
15.9;12.9 The Air Parcel Model for a Convective Cloud;518
16;CHAPTER 13 DIFFUSION GROWTH AND EVAPORATION OF WATER DROPSAND SNOW CRYSTALS;523
16.1;13.1 Laws for Diffusion of Water Vapor and Heat;523
16.1.1;13.1.1 DIFFUSION OF WATER VAPOR;523
16.1.2;13.1.2 DIFFUSION OF HEAT;528
16.2;13.2 Growth of Aqueous Solution Drops by Diffusion ofWater Vapor;530
16.2.1;13.2.1 GROWTH OF AN INDIVIDUAL STATIONARY DROP;530
16.2.2;13.2.2 DIFFUSIONAL GROWTH OF A POPULATION OF SOLUTION DROPSOF NEGLIBLE FALL VELOCITY;533
16.2.3;13.2.3 STEADY STATE EVAPORATION OF WATER DROPS FALLING IN SUBSATURATED AIR;558
16.3;13.3 Growth of Snow Crystals by Diffusion of Water Vapor;567
16.3.1;13.3.1 GROWTH OF A STATIONARY SNOW CRYSTAL;567
16.3.2;13.3.2 GROWTH OF A VENTILATED SNOW CRYSTAL;571
16.3.3;13.3.3 GROWTH RATE OF SNOW CRYSTAL FACES - SNOW CRYSTAL HABIT CHANGE;582
17;CHAPTER 14 CLOUD PARTICLE INTERACTIONS;589
17.1;14.1 The Basic Model for Drop Collisions;589
17.2;14.2 Definition of Collision Efficiency;590
17.3;14.3 The Superposition Method;592
17.4;14.4 The Boundary Value Problem Approach;595
17.4.1;14.4.1 THE QUASI-STATIONARY ASSUMPTION;595
17.4.2;14.4.2 Two SPHERES IN STEADY STOKES FLOW;596
17.4.3;14.4.3 THE SLIP-FLOW CORRECTION IN STOKES FLOW;598
17.4.4;14.4.4 Two SPHERES IN MODIFIED OSEEN FLOW;600
17.5;14.5 Collision of Water Drops with Water Drops;602
17.5.1;14.5.1 THE CASE OF CALM AIR;602
17.5.2;14.5.2 THE CASE OF TURBULENT AIR;605
17.5.3;14.5.3 EXPERIMENTAL VERIFICATION;612
17.5.4;14.5.4 COALESCENCE OF WATER DROPS IN AIR;615
17.6;14.6 Collision of Snow Crystals with Water Drops;620
17.6.1;14.6.1 COLLISION OF LARGE SNOW CRYSTALS WITH SMALL DROPS;620
17.6.2;14.6.2 COLLISION OF LARGE DROPS WITH SMALL SNOW CRYSTALS;627
17.7;14.7 Collision of Snow Crystals with Snow Crystals;628
17.8;14.8 Orientation Model for Particles in Turbulence;631
17.8.1;14.8.1 TURBULENCE MODEL;632
17.8.2;14.8.2 ORIENTATION OF SPHEROIDS IN TURBULENT AIR;632
17.8.3;14.8.3 GENERALIZED ORIENTATION DISTRIBUTION;634
18;CHAPTER 15 GROWTH OF CLOUD DROPS BY COLLISION, COALESCENCE AND BREAKUP;638
18.1;15.1 Continuous Model for Collection Growth;638
18.2;15.2 Polynomial Approximations to the GravitationalCollection Kernel;641
18.3;15.3 Stochastic Model for Collisional Growth;643
18.3.1;15.3.1 COMPLETENESS OF THE SCE;645
18.3.2;15.3.2 EXACT SOLUTIONS TO THE SCE;651
18.3.3;15.3.3 NUMERICAL AND ApPROXIMATION TECHNIQUES FOR THE SCE;657
18.4;15.4 Stochastic Model for Drop Breakup;666
18.5;15.5 Stochastic Drop Growth in Combination with StochasticDrop Breakup;671
19;CHAPTER 16 GROWTH OF ICE PARTICLES BY ACCRETION AND ICE PARTICLE MELTING;680
19.1;16.1 Growth of Ice Particles by Accretion of SupercooledDrops;680
19.1.1;16.1.1 GROWTH MODE AND STRUCTURE OF RIMED ICE PARTICLES,GRAUPEL, AND HAILSTONES;680
19.1.2;16.1.2 STRUCTURE AND GROWTH MODE OF ICE IN SUPERCOOLED WATER;684
19.1.3;16.1.3 GROWTH RATE OF ICE IN SUPERCOOLED WATER;689
19.1.4;16.1.4 FREEZING TIME OF WATER DROPS;695
19.1.5;16.1.5 GROWTH RATE OF GRAUPEL AND HAILSTONES;700
19.1.6;16.1.6 SNOW CRYSTAL MULTIPLICATION BY RIMING;708
19.2;16.2 Growth of Snow Crystals by Collision with other SnowCrystals;710
19.3;16.3 Melting of Ice Particles;712
19.3.1;16.3.1 MELTING OF GRAUPEL AND HAILSTONES;713
19.3.2;16.3.2 MELTING OF SNOW FLAKES;718
20;CHAPTER17 CLOUD CHEMISTRY;721
20.1;17.1 Concentrations of Water Soluble Compounds in BulkCloud and Rain Water, and in Bulk Water of MeltedSnow;722
20.2;17.2 Concentration of Water Insoluble Particles in BulkCloud and Rain Water and Bulk Water of Melted Snow;729
20.3;17.3 Concentration of Water Soluble Compounds inIndividual Cloud and Raindrops;732
20.4;17.4 Scavenging of Aerosol Particles by Cloud Drops,Raindrops and Ice Particles;736
20.4.1;17.4.1 NUCLEATION SCAVENGING;737
20.4.2;17.4.2 IMPACTION SCAVENGING;741
20.4.3;17.5 Scavenging of Gases by Cloud Drops, Raindrops and IceParticles;765
20.4.3.1;17.5.1 SCAVENGING OF GASES BY WATER DROPS;770
20.4.3.2;17.5.2 ASYMMETRY BETWEEN ABSORPTION AND DESORPTION OF GASES;796
20.4.3.3;17.5.3 DEVIATIONS FROM EQUILIBRIUM;798
20.4.3.4;17.5.4 SCAVENGING OF GASES BY ICE PARTICLES;804
20.5;17.6 The Scavenging Parameters;805
20.6;17.7 Wet Deposition;808
21;CHAPTER 18 CLOUD ELECTRICITY;813
21.1;18.1 Electrical State of the Cloudless Atmosphere;813
21.2;18.2 Electrical State of the Atmospheric Aerosol;816
21.3;18.3 Electrical Conductivity in Clouds;819
21.3.1;18.3.1 DIFFUSION AND CONDUCTION OF IONS TO CLOUD DROPS;819
21.3.2;18.3.2 CONDUCTIVITY IN WEAKLY ELECTRIFIED CLOUDS;820
21.3.3;18.3.3 CONDUCTIVITY IN STRONGLY ELECTRIFIED CLOUDS;823
21.4;18.4 Charge Distribution in Clouds;825
21.4.1;18.4.1 WEAKLY ELECTRIFIED CLOUDS;825
21.4.2;18.4.2 STRONGLY ELECTRIFIED CLOUDS;827
21.5;18.5 Cloud Charging Mechanisms;832
21.5.1;18.5.1 REQUIREMENTS FOR A CLOUD CHARGING MECHANISM;832
21.5.2;18.5.2 THE MAJOR CLOUD CHARGING MECHANISMS;833
21.6;18.6 Effect of Electric Fields and Charges on MicrophysicalProcesses;848
21.6.1;18.6.1 DROP AND ICE CRYSTAL NUCLEATION;848
21.6.2;18.6.2 DIFFUSIONAL GROWTH OF ICE CRYSTALS;849
21.6.3;18.6.3 DROP DEFORMATION, DISRUPTION AND CORONA PRODUCTION;850
21.6.4;18.6.4 DROP TERMINAL VELOCITIES;856
21.6.5;18.6.5 COLLISIONAL GROWTH RATE OF CLOUD PARTICLES;857
21.6.6;18.6.6 SCAVENGING OF AEROSOL PARTICLES;867
22;APPENDICES;874
23;REFERENCES;895
24;LIST OF PRINCIPAL SYMBOLS;956
25;TABLE OF PHYSICAL CONSTANTS;965
26;INDEX;966



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.