Provenzi | From Euclidean to Hilbert Spaces | Buch | 978-1-78630-682-1 | www2.sack.de

Buch, Englisch, 368 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 721 g

Provenzi

From Euclidean to Hilbert Spaces

Introduction to Functional Analysis and Its Applications
1. Auflage 2021
ISBN: 978-1-78630-682-1
Verlag: Wiley

Introduction to Functional Analysis and Its Applications

Buch, Englisch, 368 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 721 g

ISBN: 978-1-78630-682-1
Verlag: Wiley


From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces.

The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations.

The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results.

Provenzi From Euclidean to Hilbert Spaces jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xi

Chapter 1. Inner Product Spaces (Pre-Hilbert) 1

1.1. Real and complex inner products 1

1.2. The norm associated with an inner product and normed vector spaces 6

1.2.1. The parallelogram law and the polarization formula 9

1.3. Orthogonal and orthonormal families in inner product spaces 11

1.4. Generalized Pythagorean theorem 11

1.5. Orthogonality and linear independence 13

1.6. Orthogonal projection in inner product spaces 15

1.7. Existence of an orthonormal basis: the Gram-Schmidt process 19

1.8. Fundamental properties of orthonormal and orthogonal bases 20

1.9. Summary 28

Chapter 2. The Discrete Fourier Transform and its Applications to Signal and Image Processing 31

2.1. The space l2(ZN) and its canonical basis 31

2.1.1. The orthogonal basis of complex exponentials in l2(ZN) 34

2.2. The orthonormal Fourier basis of l2(ZN) 38

2.3. The orthogonal Fourier basis of l2(ZN) 40

2.4. Fourier coefficients and the discrete Fourier transform 41

2.4.1. The inverse discrete Fourier transform 44

2.4.2. Definition of the DFT and the IDFT with the orthonormal Fourier basis 46

2.4.3. The real (orthonormal) Fourier basis 47

2.5. Matrix interpretation of the DFT and the IDFT 48

2.5.1. The fast Fourier transform 51

2.6. The Fourier transform in signal processing 51

2.6.1. Synthesis formula for 1D signals: decomposition on the harmonic basis 51

2.6.2. Signification of Fourier coefficients and spectrums of a 1D signal 53

2.6.3. The synthesis formula and Fourier coefficients of the unit pulse 54

2.6.4. High and low frequencies in the synthesis formula 55

2.6.5. Signal filtering in frequency representation 59

2.6.6. The multiplication operator and its


Edoardo Provenzi is Professor of Mathematics at the University of Bordeaux, France. He studies visual phenomena and their applications in image processing and computer vision, employing tools from differential geometry, harmonic analysis and mathematical physics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.