Buch, Englisch, 742 Seiten, Format (B × H): 177 mm x 246 mm, Gewicht: 1323 g
Buch, Englisch, 742 Seiten, Format (B × H): 177 mm x 246 mm, Gewicht: 1323 g
ISBN: 978-0-521-73587-2
Verlag: Cambridge University Press
The partial differential equations that govern scalar and vector fields are the very language used to model a variety of phenomena in solid mechanics, fluid flow, acoustics, heat transfer, electromagnetism and many others. A knowledge of the main equations and of the methods for analyzing them is therefore essential to every working physical scientist and engineer. Andrea Prosperetti draws on many years' research experience to produce a guide to a wide variety of methods, ranging from classical Fourier-type series through to the theory of distributions and basic functional analysis. Theorems are stated precisely and their meaning explained, though proofs are mostly only sketched, with comments and examples being given more prominence. The book structure does not require sequential reading: each chapter is self-contained and users can fashion their own path through the material. Topics are first introduced in the context of applications, and later complemented by a more thorough presentation.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Vektoranalysis, Physikalische Felder
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Preface; To the reader; List of tables; Part I. General Remarks and Basic Concepts: 1. The classical field equations; 2. Some simple preliminaries; Part II. Applications: 3. Fourier series: applications; 4. Fourier transform: applications; 5. Laplace transform: applications; 6. Cylindrical systems; 7. Spherical systems; Part III. Essential Tools: 8. Sequences and series; 9. Fourier series: theory; 10. The Fourier and Hankel transforms; 11. The Laplace transform; 12. The Bessel equation; 13. The Legendre equation; 14. Spherical harmonics; 15. Green's functions: ordinary differential equations; 16. Green's functions: partial differential equations; 17. Analytic functions; 18. Matrices and finite-dimensional linear spaces; Part IV. Some Advanced Tools: 19. Infinite-dimensional spaces; 20. Theory of distributions; 21. Linear operators in infinite-dimensional spaces; Appendix; References; Index.