Promislow / Kapitula | Spectral and Dynamical Stability of Nonlinear Waves | Buch | 978-1-4939-0187-6 | sack.de

Buch, Englisch, Band 185, 361 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5679 g

Reihe: Applied Mathematical Sciences

Promislow / Kapitula

Spectral and Dynamical Stability of Nonlinear Waves


2013
ISBN: 978-1-4939-0187-6
Verlag: Springer

Buch, Englisch, Band 185, 361 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5679 g

Reihe: Applied Mathematical Sciences

ISBN: 978-1-4939-0187-6
Verlag: Springer


This book unifies the dynamical systems and functional analysis approaches to the linear and nonlinear stability of waves. It synthesizes fundamental ideas of the past 20+ years of research, carefully balancing theory and application. The book isolates and methodically develops key ideas by working through illustrative examples that are subsequently synthesized into general principles.

Many of the seminal examples of stability theory, including orbital stability of the KdV solitary wave, and asymptotic stability of viscous shocks for scalar conservation laws, are treated in a textbook fashion for the first time. It presents spectral theory from a dynamical systems and functional analytic point of view, including essential and absolute spectra, and develops general nonlinear stability results for dissipative and Hamiltonian systems. The structure of the linear eigenvalue problem for Hamiltonian systems is carefully developed, including the Krein signature and related stability indices. The Evans function for the detection of point spectra is carefully developed through a series of frameworks of increasing complexity. Applications of the Evans function to the Orientation index, edge bifurcations, and large domain limits are developed through illustrative examples. The book is intended for first or second year graduate students in mathematics, or those with equivalent mathematical maturity. It is highly illustrated and there are many exercises scattered throughout the text that highlight and emphasize the key concepts. Upon completion of the book, the reader will be in an excellent position to understand and contribute to current research in nonlinear stability.

Promislow / Kapitula Spectral and Dynamical Stability of Nonlinear Waves jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Introduction.- Background material and notation.- Essential and absolute spectra.- Dynamical implications of spectra: dissipative systems.- Dynamical implications of spectra: Hamiltonian systems.- Dynamical implications of spectra: Hamiltonian systems.- Point spectrum: reduction to finite-rank eigenvalue problems.- Point spectrum: linear Hamiltonian systems.- The Evans function for boundary value problems.- The Evans function for Sturm-Liouville operators on the real line.- The Evans function for nth-order operators on the real line.- Index.- References.


Todd Kapitula is a Professor of Mathematics at Calvin College.  He previously held appointments at the University of New Mexico, Virginia Tech, the University of Utah, and Brown University.  He is the co-author of the 2008 Outstanding Paper Prize “Three is a crowd: solitary waves in photorefractive media with three potential wells”, SIAM J. Dyn. Sys. 5(4):598-633 (2006).  He is the author or co-author of over 40 research articles, and has been awarded several research grants from the National Science Foundation.

Keith Promislow is Professor of Mathematics at Michigan State University. His research interests include network morphology of amphiphilic systems induced  by charged-polymer solvent interactions. He serves on the editorial board of Physica D, SIAM Math Analysis, and SIAM Dynamical Systems. He represented the American Math Society at the Coalition for National Science Funding's 2011 Capital Hill Exhibit and was the 2010 Kloosterman Professor at the University of Leiden.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.