Buch, Englisch, 600 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1088 g
Buch, Englisch, 600 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1088 g
ISBN: 978-0-7923-3482-8
Verlag: Springer Netherlands
Stochastic programming - the science that provides us with tools to design and control stochastic systems with the aid of mathematical programming techniques - lies at the intersection of statistics and mathematical programming. The book Stochastic Programming is a comprehensive introduction to the field and its basic mathematical tools. While the mathematics is of a high level, the developed models offer powerful applications, as revealed by the large number of examples presented. The material ranges form basic linear programming to algorithmic solutions of sophisticated systems problems and applications in water resources and power systems, shipbuilding, inventory control, etc.
Audience: Students and researchers who need to solve practical and theoretical problems in operations research, mathematics, statistics, engineering, economics, insurance, finance, biology and environmental protection.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
Weitere Infos & Material
1 General Theory of Linear Programming.- 2 Convex Polyhedra.- 3 Special Problems and Methods.- 4 Logconcave and Quasi-Concave Measures.- 5 Moment Problems.- 6 Bounding and Approximation of Probabilities.- 7 Statistical Decisions.- 8 Static Stochastic Programming Models.- 9 Solutions of the Simple Recourse Problem.- 10 Convexity Theory of Probabilistic Constrained Problems.- 11 Programming under Probabilistic Constraint and Maximizing Probabilities under Constraints.- 12 Two-Stage Stochastic Programming Problems.- 13 Multi-Stage Stochastic Programming Problems.- 14 Special Cases and Selected Applications.- 15 Distribution Problems.- Appendix. The Multivariate Normal Distribution.- Author Index.




