E-Book, Englisch, 496 Seiten
Prasad Plant Nanobionics
1. Auflage 2019
ISBN: 978-3-030-16379-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Volume 2, Approaches in Nanoparticles, Biosynthesis, and Toxicity
E-Book, Englisch, 496 Seiten
Reihe: Nanotechnology in the Life Sciences
ISBN: 978-3-030-16379-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Plant Nanobionics, Volume 2 continues the important discussion of nanotechnology in plants, but focuses with a focus on biosynthesis and toxicity. This book discusses novel approaches to biosynthesis of nanoparticles for the increase of plant production systems, controlled release of agrochemicals and management of plant biotic stress. Green biosynthesis of metallic nanoparticles from bee propolis, artificial photosynthesis and hybrid structures are presented.Although engineered nanoparticles have great potential for solving many agricultural and societal problems, their consequences on the ecosystems and environment must be responsibly considered. This volume aims to contribute to the limited literature on this topic through its comprehensive examination of nanoparticle toxicity on plants, microbes and human health. Environmental risks with recent data are discussed as well as risks associated with the transfer of nanoparticles through the food chain. This volume highlights the study of a mechanistic approach and the study of nanoparticles towards nanobionics. The application of polymeric materials for smart packing in the food industry and agriculture sector as well as the future of nanomaterials in detecting soil microbes for environmental remediation are also included.
Ram Prasad, Ph.D. is associated with Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India since 2005. His research interests include applied microbiology, plant-microbe-interactions, sustainable agriculture and nanobiotechnology. Dr. Prasad has more than a hundred publications to his credit, including research papers, review articles, book chapters, five patents issued or pending and several edited or authored books. Dr. Prasad has twelve years of teaching experience and has been awarded the Young Scientist Award (2007) and Prof. J.S. Datta Munshi Gold Medal (2009) by the International Society for Ecological Communications; FSAB Fellowship (2010) by the Society for Applied Biotechnology; the American Cancer Society UICC International Fellowship for Beginning Investigators, USA (2014); Outstanding Scientist Award (2015) in the field of Microbiology by the Venus International Foundation; BRICPL Science Investigator Award (ICAABT-2017) and Research Excellence Award (2018). He serves as an editorial board member for Frontiers in Microbiology, Frontiers in Nutrition, Academia Journal of Biotechnology and is the series editor of the Nanotechnology in the Life Sciences, Springer Nature, USA. Previously, Dr. Prasad served as Visiting Assistant Professor, Whiting School of Engineering, Department of Mechanical Engineering at Johns Hopkins University, USA and presently works as a Research Associate Professor at the School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;9
3;Contents;11
4;Contributors;13
5;About the Author;17
6;Chapter 1: Carbon Dots Synthesized from Green Precursors with an Amplified Photoluminescence: Synthesis, Characterization, and Its Application;18
6.1;1.1 Carbon Dots (CDs);19
6.2;1.2 Carbon Dots Synthesized from Green Precursors;20
6.3;1.3 Synthesis;23
6.4;1.4 Top-Down Approaches;23
6.4.1;1.4.1 Arc Discharge;24
6.4.2;1.4.2 Electrochemical Carbonization;25
6.4.3;1.4.3 Laser Ablation;26
6.5;1.5 Bottom-Up Approaches;27
6.5.1;1.5.1 Combustion;27
6.5.2;1.5.2 Hydrothermal/Solvothermal;28
6.5.3;1.5.3 Microwave Irradiation;29
6.6;1.6 Structural Properties;30
6.6.1;1.6.1 Surface Properties (XPS and FTIR);30
6.6.2;1.6.2 Internal Structural Properties (HRTEM, Raman, and XRD);30
6.7;1.7 Other Properties;32
6.7.1;1.7.1 Optical Absorption;32
6.7.2;1.7.2 Excitation Wavelength-Dependent Fluorescence;35
6.7.3;1.7.3 Upconverted Photoluminescence (UCPL);35
6.7.4;1.7.4 Electron Transfer Property;35
6.8;1.8 Applications;36
6.8.1;1.8.1 Bioimaging;37
6.8.2;1.8.2 Sensing;39
6.8.3;1.8.3 Biomedicine (Drug Delivery and Gene Transfer);41
6.8.4;1.8.4 Photocatalysis;43
6.9;References;44
7;Chapter 2: Perovskite Oxide–Based Photocatalysts for Excellent Visible Light–Driven Photocatalysis and Energy Conversion;51
7.1;2.1 Introduction;52
7.2;2.2 Synthesis Methods of Perovskite Oxides;53
7.2.1;2.2.1 Solid-State Method;54
7.2.2;2.2.2 Coprecipitation Method;54
7.2.3;2.2.3 Hydrothermal Method;55
7.3;2.3 Overview of Perovskite Oxides in Photocatalysis;55
7.3.1;2.3.1 Titanium-Based Perovskite Oxides;56
7.3.2;2.3.2 Tantalum-Based Perovskite Oxides;57
7.3.3;2.3.3 Niobium-Based Perovskite Oxides;59
7.4;2.4 Applications and Catalytic Studies of Perovskite Oxides;60
7.4.1;2.4.1 Photocatalytic Water Splitting;62
7.4.2;2.4.2 Photodegradation of Organic Pollutants;63
7.4.3;2.4.3 Photocatalytic Conversion of Carbon Dioxide to Fuels;64
7.4.4;2.4.4 Other Applications;65
7.5;2.5 Future Perspectives;66
7.6;2.6 Conclusion;67
7.7;References;67
8;Chapter 3: Biogenic Material With Iron Nanoparticles for As(V) Removal;71
8.1;3.1 Introduction: Arsenic in the Water;71
8.1.1;3.1.1 Arsenic in Drinking Water for Human Consumption;72
8.2;3.2 Methods for Arsenic Removal;73
8.2.1;3.2.1 Iron Nanoparticles;73
8.3;3.3 Material Synthesis;74
8.3.1;3.3.1 Composition and Characterization of Pineapple Peel;75
8.3.2;3.3.2 Neutron Activation Analysis (NAA);78
8.3.3;3.3.3 X-Ray Photoelectron Spectroscopy (XPS);81
8.3.4;3.3.4 Specific Surface Area and Isoelectric Point;83
8.3.5;3.3.5 As(V) Sorption Studies;84
8.4;3.4 Conclusions;87
8.5;References;89
9;Chapter 4: Potential of Biogenic Plant-Mediated Iron and Iron Oxide Nanoparticles and Their Utility;92
9.1;4.1 Introduction;92
9.2;4.2 Contrast Agents for Magnetic Resonance Imaging;97
9.3;4.3 Wastewater Treatment;102
9.4;4.4 Sensors/Biosensors/Nanosensors/Nanobiosensors;105
9.5;4.5 Antimicrobial/Bactericidal Agents;107
9.6;4.6 Cancer/Tumor Therapy;109
9.7;4.7 Drug Delivery;113
9.8;4.8 Catalysts/Photocatalysts;115
9.9;4.9 Future Perspectives;116
9.10;4.10 Conclusion;116
9.11;References;117
10;Chapter 5: Potential of Biogenic Plant-Mediated Copper and Copper Oxide Nanostructured Nanoparticles and Their Utility;129
10.1;5.1 Introduction;129
10.2;5.2 Biosensing;131
10.3;5.3 Catalysts;138
10.4;5.4 Optoelectronics;152
10.5;5.5 Wastewater Removal and Its Purification;153
10.6;5.6 Anticancer Activity;154
10.7;5.7 Antimicrobial/Antibacterial Activity;157
10.8;5.8 Antioxidant Activity;161
10.9;5.9 Imaging Agents;162
10.10;5.10 Drug Delivery Agents;164
10.11;5.11 Diagnosis and Therapeutic Agents;165
10.12;5.12 Future Perspectives;168
10.13;5.13 Conclusions;169
10.14;References;169
11;Chapter 6: Applications of Nanomaterials and Future Prospects for Nanobionics;191
11.1;6.1 Introduction;192
11.2;6.2 Roles of Nanomaterials in Plant Growth;193
11.3;6.3 Plant Nanobionics;195
11.3.1;6.3.1 Architecture of the Plant Cell Wall in Terms of Nanobionics;196
11.3.2;6.3.2 Supercharged Photosynthesis: Processes Involved in the Photosynthetic Machinery;196
11.3.3;6.3.3 Engineered Nanomaterials and Photosynthesis;197
11.4;6.4 Applications of Nanomaterials;198
11.4.1;6.4.1 Food and Agriculture;198
11.4.2;6.4.2 Gene Delivery Systems;200
11.5;6.5 Microbial Nanobionics;204
11.5.1;6.5.1 Microbial Cell Factories;204
11.5.2;6.5.2 Microbial Fuel Cells;206
11.6;6.6 Nanobionic Engineering of Plant Organelles;207
11.7;6.7 Conclusions and Future Work;209
11.8;References;209
12;Chapter 7: Nanomaterials, Polymers, and Smart Packaging for Food Materials;212
12.1;7.1 Introduction to Nanotechnology;212
12.2;7.2 Nanostructured Materials Used in the Food Industry;214
12.2.1;7.2.1 Liposomes;216
12.2.2;7.2.2 Nanoemulsions;217
12.2.3;7.2.3 Polymeric Nanocomposites;218
12.2.4;7.2.4 Nanoparticles;219
12.2.5;7.2.5 Films;221
12.3;7.3 Smart Packaging;222
12.3.1;7.3.1 Applications and Uses of Smart Packaging;223
12.3.2;7.3.2 Biodegradability;226
12.4;7.4 Future Perspectives;226
12.5;References;227
13;Chapter 8: Polymeric Nanoparticles in Foods;230
13.1;8.1 Introduction;231
13.2;8.2 Nanotechnology;231
13.3;8.3 Food Nanotechnology;232
13.4;8.4 Polymeric Nanoparticles;232
13.4.1;8.4.1 Nanocapsules;233
13.4.2;8.4.2 Nanospheres;233
13.4.3;8.4.3 Polymers Used in the Formation of Nanoparticles;234
13.4.4;8.4.4 Advantages of the Use of Polymeric Nanoparticles;235
13.4.5;8.4.5 Controlled Release of Polymer Nanoparticles;235
13.5;8.5 Nanoencapsulation of Bioactive Substances;236
13.5.1;8.5.1 Important Bioactive Substances in Food;237
13.5.1.1;8.5.1.1 Antioxidants;237
13.5.1.2;8.5.1.2 Antimicrobials;239
13.5.1.3;8.5.1.3 Colorants;240
13.6;8.6 Food Applications;240
13.6.1;8.6.1 Browning Inhibitors by Application of Nanocapsules of ?-Tocopherol in Apple;241
13.6.2;8.6.2 Nanostructured Nisin in Orange Juice;241
13.6.3;8.6.3 Conservation of Tuna Fish with Liquid Smoke Nanoparticles;242
13.6.4;8.6.4 Nanostructured Nisin Antimicrobials in Lean Beef;242
13.6.5;8.6.5 Controlled Release of ?-Carotene in Fresh Cut Melon;242
13.7;8.7 Conclusions and Future Trends;243
13.8;References;243
14;Chapter 9: Application of Nanoparticles in Crop Production and Protection;247
14.1;9.1 Introduction;247
14.2;9.2 Classification of Nanomaterials;248
14.2.1;9.2.1 Carbon-based Materials;248
14.2.1.1;9.2.1.1 Fullerenes;249
14.2.1.2;9.2.1.2 Carbon Nanotubes (CNTs);249
14.2.2;9.2.2 Metal-Based Materials;250
14.2.3;9.2.3 Dendrimers;250
14.2.4;9.2.4 Composites;250
14.3;9.3 Role of Nanoparticles in Plant Growth and Development;251
14.3.1;9.3.1 NPs Have a Wide Range of Application in Different Plant Processes;255
14.3.2;9.3.2 Effect of NPs in Seed Germination;255
14.3.3;9.3.3 Effect of NPs in Photosynthesis;256
14.3.4;9.3.4 Utilization of NPs in Disease Management;257
14.4;9.4 Toxicity of Nanoparticles;258
14.5;9.5 Conclusion and Future Prospects;259
14.6;References;260
15;Chapter 10: Nanopesticide: Future Application of Nanomaterials in Plant Protection;266
15.1;10.1 Introduction;267
15.2;10.2 Developing Nanopesticide;267
15.2.1;10.2.1 Definition and Concept of Nanomaterials in Developing Nanopesticide;267
15.2.2;10.2.2 Pesticide Nanoformulation;268
15.3;10.3 Metal-based Nanopesticide;270
15.3.1;10.3.1 Metal Nanoparticle Synthesis;270
15.3.2;10.3.2 Mode of Action;271
15.3.3;10.3.3 Metal Nanoformulation;275
15.4;10.4 Essential Oil-based Nanopesticide;279
15.4.1;10.4.1 Plant Essential Oil;279
15.4.2;10.4.2 Essential Oil Nanoformulation;280
15.4.3;10.4.3 Mode of Action;282
15.5;10.5 Agrochemical and Bioactive Agent/Material-based Nanopesticide;284
15.5.1;10.5.1 Agrochemical Pesticide Nanoformulations;284
15.5.2;10.5.2 Bioactive Agent Nanoformulation;289
15.6;10.6 Commercial Product and Uses of Nanopesticide;291
15.7;10.7 Future Prospects and Challenges of Nanopesticide Formulation and Application in Plant Pest and Disease Management;293
15.8;10.8 Conclusion and Suggestion;296
15.9;References;297
16;Chapter 11: Nanotechnology: An Emerging Tool for Management of Biotic Stresses in Plants;310
16.1;11.1 Introduction;311
16.2;11.2 Important Nanoparticles Used in Plant Protection and Their Synthesis;312
16.3;11.3 Synthesis of Nanoparticles;313
16.3.1;11.3.1 Application of Nanotechnology;313
16.3.1.1;11.3.1.1 Role of Nanotechnology in Detection and Diagnosis of Biotic Stresses in Plants;313
16.3.1.2;11.3.1.2 Nanoparticles;315
16.3.1.3;11.3.1.3 Nanoscale Biosensors;315
16.3.1.4;11.3.1.4 Quantum Dots;316
16.3.1.5;11.3.1.5 Nanobarcodes;316
16.3.1.6;11.3.1.6 Nano Diagnostic Kit;316
16.3.1.7;11.3.1.7 Nanofabrication;317
16.3.1.8;11.3.1.8 Nanopore Sequencing System;317
16.3.1.9;11.3.1.9 Nanoparticles in MicroRNA Detection;317
16.3.2;11.3.2 Role of Nanotechnology in Plant Disease Management;318
16.3.2.1;11.3.2.1 Silver Nanoparticles;318
16.3.2.2;11.3.2.2 Silica Nanoparticles;318
16.3.2.3;11.3.2.3 Copper Nanoparticles;319
16.3.2.4;11.3.2.4 Zinc Oxide Nanoparticles;319
16.3.2.5;11.3.2.5 Chitosan-based Nanoparticles;319
16.3.3;11.3.3 Role of Nanotechnology in Insect Pest Management;320
16.3.4;11.3.4 Role of Nanotechnology in Weed Management;320
16.3.5;11.3.5 Role of NPs on Plant Growth Enhancement;322
16.4;11.4 Mechanism of NPs-Plant Interaction Against Biotic Stresses;325
16.4.1;11.4.1 Uptake and Translocation of NPs;325
16.4.2;11.4.2 Mechanisms of Nanoparticles-Plant Interaction in Response to Biotic Stresses;326
16.4.3;11.4.3 Direct Attachment of NPs with Plant Pathogens;326
16.4.3.1;11.4.3.1 ROS Production (Destructive or Signaling Role);326
16.4.3.2;11.4.3.2 Other Mechanisms;327
16.4.3.3;11.4.3.3 Mechanisms of NPs-Insect Interaction;328
16.5;11.5 Types of Nanoformulation Used in Plant Protection;328
16.5.1;11.5.1 Nanogel;329
16.5.2;11.5.2 Nanoemulsions;329
16.5.3;11.5.3 Nanoencapsulation;330
16.5.4;11.5.4 Nanosuspensions;330
16.6;11.6 Polymer-based Nanoformulations;330
16.6.1;11.6.1 Fungicide Formulation;331
16.6.2;11.6.2 Insecticide Formulation;331
16.6.3;11.6.3 Herbicide Formulation;332
16.7;11.7 Smart Delivery System of Nanoformulation;332
16.7.1;11.7.1 In Vitro Methods of Application;333
16.7.1.1;11.7.1.1 Aeroponics;333
16.7.1.2;11.7.1.2 Hydroponics;333
16.7.2;11.7.2 In Vivo Methods of Application;333
16.7.2.1;11.7.2.1 Soil Application;333
16.7.2.2;11.7.2.2 Foliar Application;334
16.8;11.8 Limitations and Potential Risks of Nanotechnology;334
16.9;11.9 Future Prospects;335
16.10;11.10 Conclusion;335
16.11;References;336
17;Chapter 12: Plant Nanobionics: Application of Nanobiosensors in Plant Biology;347
17.1;12.1 Introduction;348
17.1.1;12.1.1 Sensitivity;351
17.1.2;12.1.2 Stability;351
17.1.3;12.1.3 Selectivity;352
17.2;12.2 The Biological Components of Nanobiosensors (NBSs);352
17.2.1;12.2.1 Principles of Molecular Recognition;353
17.2.2;12.2.2 Molecular Basics of Ag–Ab Interaction;354
17.2.3;12.2.3 Types of Biological Components;357
17.3;12.3 Integration of Biological Components into NBSs;360
17.4;12.4 NBSs Based on DNA, Nanotubes, and Semiconductor Polymers;361
17.4.1;12.4.1 The Gold Electrode;362
17.4.2;12.4.2 Graphite Electrode;362
17.4.3;12.4.3 Kinetics of Enzymes Used in NBSs;363
17.5;12.5 Recent Advances in Electrochemical NBSs;364
17.5.1;12.5.1 Classification;366
17.5.2;12.5.2 The Biocatalytic Recognition Element Receptor;366
17.5.3;12.5.3 Receptor: Antagonist/Agonist;368
17.5.4;12.5.4 Indirect Inhibitor or Activator Monitoring of Biochemical Receptors;368
17.5.5;12.5.5 Immobilization of Biological Receptors;369
17.6;12.6 Internal Membranes and External Membranes;370
17.6.1;12.6.1 Clark Electrode: Applications in Plant Nanobionics;371
17.6.2;12.6.2 The Enzymatic Electrode;372
17.7;12.7 Fiber-Optic Biosensors (FOBS) in Plant Nanobionics;374
17.8;12.8 Applications in Plant Nanobionics;374
17.9;12.9 Genes for the Synthesis of Enzymes or Enzyme Inhibitors with Insecticidal Effect;379
17.10;12.10 Conclusions and Remarks;383
17.11;References;384
18;Chapter 13: Toxicity of Nanomaterials in Plants and Environment;387
18.1;13.1 Introduction;387
18.2;13.2 Toxicity Effects of NMs on Plant Growth;388
18.2.1;13.2.1 Plant Uptake of ENMs;388
18.2.2;13.2.2 Carbon Based Engineered Nanomaterials;389
18.2.2.1;13.2.2.1 Carbon Nanotubes;389
18.2.2.2;13.2.2.2 Graphene and Graphene Oxide;389
18.2.3;13.2.3 Metal and Metal Oxide Engineered Nanomaterials;393
18.2.3.1;13.2.3.1 Gold (Au);394
18.2.3.2;13.2.3.2 Silver (Ag);395
18.2.3.3;13.2.3.3 Cadmium (Cd);397
18.2.3.4;13.2.3.4 Titanium Oxide (TiO2);398
18.2.3.5;13.2.3.5 Aluminum (Al);400
18.2.3.6;13.2.3.6 Fe3O4;401
18.2.3.7;13.2.3.7 Zinc (Zn);402
18.2.3.8;13.2.3.8 Copper (Cu);403
18.2.3.9;13.2.3.9 Other Metal;404
18.3;13.3 Effect of ENMs on the Toxicity of Environmental Pollutants;404
18.3.1;13.3.1 Carbon Nanomaterials;404
18.3.2;13.3.2 Metal and Metal Oxide Nanoparticles;407
18.4;13.4 Conclusions;408
18.5;References;409
19;Chapter 14: Nanocellulose as Polymer Composite Reinforcement Material;418
19.1;14.1 Introduction;418
19.1.1;14.1.1 Cellulose Nanocrystals Plant Derived;421
19.2;14.2 Distinguishable Properties of CNCs for Reinforcement Material;422
19.3;14.3 CNC Production Steps;423
19.4;14.4 Characterization of Nanocellulose;425
19.4.1;14.4.1 Measurement of Zeta Potential (?);425
19.4.2;14.4.2 X-Ray Diffraction (XRD);427
19.4.3;14.4.3 Thermal Analyses;427
19.4.3.1;14.4.3.1 Thermogravimetric Analysis (TGA);427
19.4.3.2;14.4.3.2 Differential Scanning Calorimetry (DSC);427
19.4.3.3;14.4.3.3 Fourier Transform Infrared (FTIR) Spectroscopy;428
19.4.4;14.4.4 Microscopy;428
19.4.4.1;14.4.4.1 Scanning Electron Microscopy (SEM);428
19.4.4.2;14.4.4.2 Transmission Electron Microscopy (TEM);429
19.4.4.3;14.4.4.3 Atomic Force Microscopy (AFM);429
19.4.5;14.4.5 Dynamic Light Scattering (DLS) for Measurement of Particle Size;429
19.4.6;14.4.6 Birefringence Analysis;430
19.4.7;14.4.7 Inverse Gas Chromatography (IGC) Analysis;430
19.4.8;14.4.8 Rheological Characterization;430
19.5;14.5 Modifications Achievable in Nanocellulose Crystals;431
19.6;14.6 Conclusion;433
19.7;References;433
20;Chapter 15: Nanomaterials and Their Applications in Bioimaging;437
20.1;15.1 Introduction;438
20.2;15.2 Nanomaterials for Bioimaging;439
20.2.1;15.2.1 Gold Nanoparticles;439
20.2.2;15.2.2 Silica Nanoparticles;440
20.2.3;15.2.3 Magnetic Nanoparticles;441
20.2.4;15.2.4 Quantum Dots;442
20.2.5;15.2.5 Carbon Nanotubes;443
20.2.6;15.2.6 Fullerenes;443
20.2.7;15.2.7 Graphene;444
20.3;15.3 Applications of Nanoparticles in Different Bioimaging Modalities;445
20.3.1;15.3.1 Magnetic Resonance Imaging;445
20.3.2;15.3.2 Computed Tomography;446
20.3.3;15.3.3 Positron Emission Tomography;448
20.3.4;15.3.4 Ultrasound Imaging;449
20.3.5;15.3.5 Fluorescence Imaging;450
20.3.6;15.3.6 Photoacoustic Imaging (PAI);451
20.4;15.4 Conclusion;452
20.5;References;453
21;Chapter 16: Green Engineering of Silver Nanoparticles to Combat Plant and Foodborne Pathogens: Potential Economic Impact and Food Quality;459
21.1;16.1 Introduction;460
21.2;16.2 Green Synthesis of Silver Nanoparticles Using Plant Extract;462
21.2.1;16.2.1 Plant Broth Preparation from Plant Extract;462
21.2.2;16.2.2 Single-Step Method for Green Synthesis of Silver Nanoparticles Using Plant Extract;463
21.2.3;16.2.3 The Mechanism of Silver Nanoparticle Synthesis Using Plant Extracts;464
21.2.4;16.2.4 Green Synthesis Approaches to Synthesis of Silver Nanoparticles;465
21.2.5;16.2.5 The Advantages of Using Green Synthesis of Silver Nanoparticles;468
21.3;16.3 Plant and Foodborne Pathogens;469
21.4;16.4 Antimicrobial Activity of Silver Nanoparticles on Plant and Foodborne Pathogens;470
21.4.1;16.4.1 Mechanisms of Action of Silver Nanoparticles on Microbial Pathogens;472
21.5;16.5 The Potential Benefits of Using Green Synthesis of Silver Nanoparticles in Agriculture and Food Sectors;474
21.6;16.6 Nanotechnology in Agriculture and the Food Sector: Potential Economic Impact;475
21.7;16.7 Conclusion;476
21.8;References;476
22;Index;485




