E-Book, Englisch, 407 Seiten
Prasad Plant Nanobionics
1. Auflage 2019
ISBN: 978-3-030-12496-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Volume 1, Advances in the Understanding of Nanomaterials Research and Applications
E-Book, Englisch, 407 Seiten
Reihe: Nanotechnology in the Life Sciences
ISBN: 978-3-030-12496-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
An improved understanding of the interactions between nanoparticles and plant retorts, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. This may further impact other agricultural and industrial processes that are based on plant crops.This two-volume book analyses the key processes involved in the nanoparticle delivery to plants and details the interactions between plants and nanomaterials. Potential plant nanotechnology applications for enhanced nutrient uptake, increased crop productivity and plant disease management are evaluated with careful consideration regarding safe use, social acceptance and ecological impact of these technologies.Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications begins the discussion of nanotechnology applications in plants with the characterization and nanosynthesis of various microbes and covers the mechanisms and etiology of nanostructure function in microbial cells. It focuses on the potential alteration of plant production systems through the controlled release of agrochemicals and targeted delivery of biomolecules. Industrial and medical applications are included. Volume 2 continues this discussion with a focus on biosynthesis and toxicity.
Ram Prasad, Ph.D. is associated with Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India since 2005. His research interests include applied microbiology, plant-microbe-interactions, sustainable agriculture and nanobiotechnology. Dr. Prasad has more than hundred publications to his credit, including research papers, review articles and book chapters and five patents issued or pending. He has also edited or authored several books. Dr. Prasad has twelve years of teaching experience and has been awarded the Young Scientist Award (2007) and Prof. J.S. Datta Munshi Gold Medal (2009) by the International Society for Ecological Communications; FSAB Fellowship (2010) by the Society for Applied Biotechnology; the American Cancer Society UICC International Fellowship for Beginning Investigators, USA (2014); Outstanding Scientist Award (2015) in the field of Microbiology by Venus International Foundation; BRICPL Science Investigator Award (ICAABT-2017) and Research Excellence Award (2018). He serves as an editorial board member for the following journals: Frontiers in Microbiology, Frontiers in Nutrition, Academia Journal of Biotechnology. He is also the Series Editor of the Springer Nature series Nanotechnology in the Life Sciences. Previously, Dr. Prasad served as Visiting Assistant Professor, Whiting School of Engineering, Department of Mechanical Engineering at Johns Hopkins University, USA and presently works as Research Associate Professor at School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;10
4;About the Author;14
5;Chapter 1: Recent Advancements and New Perspectives of Nanomaterials;15
6;Chapter 2: Recent Progress in Applied Nanomaterials;47
6.1;2.1 Introduction;47
6.2;2.2 Nanotechnology in Agriculture Sector;48
6.2.1;2.2.1 Effect of Nanoparticles on Germination of Seed;49
6.2.2;2.2.2 Nanofertilizer and Nanopesticides;51
6.2.2.1;2.2.2.1 Macro- and Micronutrient Nanofertilizers;51
6.2.2.2;2.2.2.2 Nanopesticides;52
6.2.3;2.2.3 Role of Nanosensors in Agriculture;54
6.3;2.3 Role of Nanoparticles in Food Sector;55
6.3.1;2.3.1 Food Processing and Packaging;55
6.3.1.1;2.3.1.1 Antimicrobial Packaging;56
6.3.1.2;2.3.1.2 Barrier Packaging;56
6.3.1.3;2.3.1.3 Biodegradable Packaging;57
6.3.2;2.3.2 Other Advantages of Nanomaterials in Food Industry;57
6.3.2.1;2.3.2.1 Nanosensors;58
6.4;2.4 Application of Nanomaterials in Manufacture and Electronics;58
6.5;2.5 Applications in Environment;59
6.6;2.6 Nanotechnology in Medicine;60
6.6.1;2.6.1 Organic Nanoparticles;60
6.6.1.1;2.6.1.1 Polymeric Nanoparticles Role in Therapeutics;60
6.6.1.1.1;2.6.1.1.1 PLGA Nanoparticles;61
6.6.1.1.2;2.6.1.1.2 Chitosan;62
6.6.1.1.3;2.6.1.1.3 Dendrimers;63
6.6.2;2.6.2 Liposomes;65
6.6.3;2.6.3 Inorganic Nanoparticles;66
6.6.3.1;2.6.3.1 Gold Nanoparticles (AuNPs);66
6.6.3.2;2.6.3.2 Quantum Dots;68
6.7;2.7 Conclusion;69
6.8;References;70
7;Chapter 3: An Insight into Plant Nanobionics and Its Applications;79
8;Chapter 4: Plastics, Micro- and Nanomaterials, and Virus-Soil Microbe-Plant Interactions in the Environment;97
9;Chapter 5: Characterization Methods for Chitosan-Based Nanomaterials;116
10;Chapter 6: Impact of Nanomaterials in Plant Systems;130
10.1;6.1 Introduction;131
10.2;6.2 Types of Nanomaterials;132
10.2.1;6.2.1 Metal Nanomaterials;132
10.2.2;6.2.2 Carbon-Based Materials;133
10.2.3;6.2.3 Polymeric Nanomaterials;134
10.2.4;6.2.4 Hybrid Nanomaterials;135
10.3;6.3 Synthesis of Nanomaterials;136
10.3.1;6.3.1 Top-Down Synthesis;136
10.3.2;6.3.2 Bottom-Up Synthesis;137
10.4;6.4 Role of Nanomaterials in Plant Growth;137
10.5;6.5 Phytotoxic Responses to Nanomaterials;138
10.5.1;6.5.1 Nanotoxicity and Plant Growth;146
10.5.2;6.5.2 Physiological and Biochemical Responses;147
10.6;6.6 Conclusion and Future Prospects;147
10.7;References;148
11;Chapter 7: Nanoagriculture and Energy Advances;154
11.1;7.1 Nanotechnology and Nanoagriculture;155
11.2;7.2 Water;156
11.2.1;7.2.1 Sensor for Diagnostic;156
11.2.1.1;7.2.1.1 Quality;157
11.2.1.2;7.2.1.2 Microorganism and Contaminants Detected;157
11.2.2;7.2.2 Water Purification;159
11.2.2.1;7.2.2.1 Photocatalysis;160
11.2.2.2;7.2.2.2 Membranes, Zeolites, and Nanoporous Materials;162
11.2.2.3;7.2.2.3 Metallic and Magnetic Nanoparticles;163
11.3;7.3 Nanoagriculture;165
11.3.1;7.3.1 Pesticides and Fertilizers;165
11.3.2;7.3.2 Smart Agrochemical Delivery Systems;166
11.3.3;7.3.3 Sensor to Monitor Soil Conditions;166
11.4;7.4 Energy;167
11.4.1;7.4.1 Biogas;167
11.4.2;7.4.2 Biofuels;168
11.4.3;7.4.3 Photovoltaic Cells;168
11.4.4;7.4.4 Photoelectrochemical Cells;170
11.5;7.5 Outlooks;170
11.6;References;171
12;Chapter 8: Nanopesticides and Nanosensors in Agriculture;178
12.1;8.1 Introduction;178
12.2;8.2 Pesticide Toxicity;180
12.3;8.3 Nanopesticides;181
12.4;8.4 Nanoformulations;186
12.5;8.5 Detection of Pesticides;188
12.6;8.6 Ecotoxicology of Nanomaterials and Related Regulations;190
12.7;References;191
13;Chapter 9: Nano-agriculture in the Food Industry;195
14;Chapter 10: Nanotechnology and Plant Extracts as a Future Control Strategy for Meat and Milk Products;213
14.1;10.1 Introduction;213
14.2;10.2 Nanoencapsulation of Plant Extracts;214
14.3;10.3 Plant-Mediated Synthesis of Nanoparticles;217
14.4;10.4 Biological Hazards in Meat and Milk Products;219
14.4.1;10.4.1 Antibacterial Effects of Nanoencapsulated Plant Extracts in Meat and Milk Products;220
14.4.2;10.4.2 Antibacterial Mechanisms of Nanoparticles;223
14.4.3;10.4.3 Antifungal Effects of Nanoparticles;240
14.5;10.5 Oxidation of Meat and Milk Products;241
14.5.1;10.5.1 Antioxidative Effect of Nanoencapsulated Plant Extracts;242
14.5.2;10.5.2 Antioxidative Effect of Nanoparticles;243
14.5.3;10.5.3 Antioxidant Active Packaging;245
14.5.3.1;10.5.3.1 Use of Nanoencapsulation in Antioxidant Active Packaging;245
14.5.3.2;10.5.3.2 Nanoparticles in Antioxidant Active Packaging;247
14.5.3.3;10.5.3.3 Nanoparticles in Oxygen Colorimetric Indicators;247
14.6;10.6 Chemical Hazards and Application of Nanoparticles in the Meat and Milk Sectors;248
14.7;10.7 Current Limitations, Safety, and Further Perspectives of Nanoparticle Application in the Food Industry;249
14.8;References;251
15;Chapter 11: Impact of Nanoparticles on Photosynthesizing Organisms and Their Use in Hybrid Structures with Some Components of Photosynthetic Apparatus;266
15.1;11.1 Introduction;267
15.2;11.2 Impact of Carbon-Based Nanomaterials on Photosynthesizing Organisms;269
15.2.1;11.2.1 Impact of Carbon-Based Nanomaterials on Algae;269
15.2.1.1;11.2.1.1 Graphene and Graphene Oxide;269
15.2.1.2;11.2.1.2 Fullerene;271
15.2.1.3;11.2.1.3 Single-Walled and Multi-Walled Carbon Nanotubes;271
15.2.2;11.2.2 Impact of Carbon-Based Nanomaterials on Vascular Plants;273
15.2.2.1;11.2.2.1 Graphene, Graphene Oxide;274
15.2.2.2;11.2.2.2 Fullerene, Fullerenol;275
15.2.2.3;11.2.2.3 Single-Walled and Multi-Walled Carbon Nanotubes;275
15.2.3;11.2.3 Impact of Metal Nanoparticles on Algae;279
15.2.3.1;11.2.3.1 Copper and Copper Oxide Nanoparticles;280
15.2.3.2;11.2.3.2 Zinc Oxide Nanoparticles;281
15.2.3.3;11.2.3.3 Iron Oxide Nanoparticles;283
15.2.3.4;11.2.3.4 Nickel and Nickel Oxide Nanoparticles;283
15.2.3.5;11.2.3.5 Cr2O3 Nanoparticles;284
15.2.3.6;11.2.3.6 Silver Nanoparticles;284
15.2.3.7;11.2.3.7 Cerium Dioxide Nanoparticles;286
15.2.3.8;11.2.3.8 Titanium Dioxide Nanoparticles;287
15.2.4;11.2.4 Impact of Metal Nanoparticles on Vascular Plants;289
15.2.4.1;11.2.4.1 Copper and Copper Oxide Nanoparticles;289
15.2.4.2;11.2.4.2 Zinc Oxide Nanoparticles;293
15.2.4.3;11.2.4.3 Iron and Iron Oxide Nanoparticles (FeNPs);297
15.2.4.4;11.2.4.4 Silver Nanoparticles;301
15.2.4.5;11.2.4.5 Cerium Dioxide Nanoparticles;304
15.2.4.6;11.2.4.6 Titanium Dioxide Nanoparticles;308
15.3;11.3 Hybrid Structures of Nanoparticles and Components of Photosynthetic Apparatus Operating as Photoelectric Systems;311
15.3.1;11.3.1 Hybrid Structures Containing Photosystem I;312
15.3.2;11.3.2 Hybrid Structures Containing Photosystem II;315
15.3.3;11.3.3 Hybrid Structures Containing Cytochrome c;316
15.3.4;11.3.4 Hybrid Structures Containing Chloroplasts, Thylakoids, and Photosynthetic Pigments;317
15.3.5;11.3.5 Hybrid Structures Containing Cyanobacteria and Alga;318
15.4;11.4 Improving Plant Functioning by Nanobionics Approach;319
15.5;11.5 Conclusion;321
15.6;References;322
16;Chapter 12: Nanotechnology and Plant Tissue Culture;344
16.1;12.1 Introduction: Tissue Culture in Modern Agriculture;345
16.2;12.2 From the Twentieth Century to the Current Scenario;347
16.3;12.3 Accelerated Multiplication of Plants;347
16.4;12.4 Uses of Plant Tissue Culture Technology;349
16.5;12.5 Genetic Improvement of Crops;353
16.6;12.6 Obtaining Healthy Plants and Conservation of Germplasm;354
16.7;12.7 Production of Drugs and Other Natural Products;355
16.8;12.8 Advance of Nanotechnology in Plant Tissue Culture;356
16.8.1;12.8.1 Nanomaterials in Plant Biotransformation;361
16.8.2;12.8.2 Using Nanomaterials as Decontaminant Agent in Plant Tissue Culture;364
16.8.3;12.8.3 Nanomaterial-Based Decontamination in Plant Tissue Culture;365
16.8.3.1;12.8.3.1 Silver Nanoparticles (Ag NPs);366
16.8.3.2;12.8.3.2 Titanium Dioxide Nanoparticles (TiO2 NPs);367
16.8.3.3;12.8.3.3 Zinc Oxide Nanoparticles (ZnO);368
16.9;12.9 Conclusions and Future Outlook;369
16.10;References;370
17;Chapter 13: Advances in Nanobiotechnology with Special Reference to Plant Systems;382
17.1;13.1 Introduction;383
17.2;13.2 Interaction of Nanoparticles with the Plant Systems;383
17.2.1;13.2.1 Source of the Nanomaterials;384
17.2.2;13.2.2 Uptake of Nanomaterial by the Plant Cell;384
17.2.3;13.2.3 Movement of the Nanoparticles Through the Plant Tissues;385
17.2.4;13.2.4 Effects of Plant-Nanoparticles Interaction on Growth and Development;386
17.3;13.3 Nanomaterials Role in Modulation of Primary Metabolism and Secondary Metabolism;388
17.4;13.4 Nanobionics Plants: Improved Photosynthesis and Chemical Sensing Potential of Plants;391
17.5;13.5 Conclusion;392
17.6;References;393
18;Index;399




