Prasad | Physics and Technology for Engineers | E-Book | sack.de
E-Book

E-Book, Englisch, 536 Seiten, eBook

Prasad Physics and Technology for Engineers

Understanding Materials and Sustainability
1. Auflage 2023
ISBN: 978-3-031-32084-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Understanding Materials and Sustainability

E-Book, Englisch, 536 Seiten, eBook

ISBN: 978-3-031-32084-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This textbook covers the physics of engineering materials and the latest technologies used in modern engineering projects. It has been designed for use as a reference book and course material for undergraduate engineering students. The book was born out of the need for a comprehensive, balanced, and up-to-date guide for teaching physics to beginning undergraduate engineering students and creating examination papers for technical boards and institutes. The text is divided into ten chapters, each with its specific objectives and features. The topics covered include the classification of engineering materials, atomic structure, electrical and magnetic behavior of solids, quantum mechanics, laser technology, nanomaterials, and sustainable development.

Authored by a physicist with over 40 years of teaching experience, this richly-illustrated textbook features an abundance of self-assessment questions, solved examples, and a variety of chapter-end questions with detailed answers. The textbook starts from the very basics and is developed to the desired level, thus making it ideal as standalone course material.

Prasad Physics and Technology for Engineers jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Contents of

Chapter-1

Chapter-1      Engineering Materials, Atomic Structure

and Bounding

Objective

1.1         

Classification of condensed

matter

(a )         

(b)          

(c)     Different types of metal strengths

(i)                 

Tensile strength

(ii)               

Yield strength

(iii)             

Compressive strength

(iv)             

Impact strength

(v)               

Shear strength

(vi)             

Ultimate strength

(d)    

(e)    

1.1.2        

1.1.3        

(i)                 

Classification based on molecular

forces

(a)    Elastomers

(b)   Fibers

(c)    Resins

(ii)               

Classification based on heat

treatment              

(d)   Thermoplastic polymers

(e)   Thermosetting polymers

(iii)             

Classification based on source

(f)     Natural Polymers

(g)    Semi-synthetic polymers

(h)   Synthetic polymers

(iv)             

Classification based on structure

(i)      Linear polymers

(j)     Branched polymers

(k)    Cross-linked polymers

(v)               

Classification based on mode of

polymerization

(l)      Addition polymers

(m) Condensation polymer

(a)  

Polymer matrix composites

(b)  

 Metal matrix composites

(c)   

Ceramic matrix composites (CMC)

1.2              

Atomic structure

1.2.1      Elements of atomic

structure

1.2.2      Arrangement

of electrons in atom

(a)   

Principal quantum number ‘n’

(b)  

Azimuthal quantum number

(c)    

Magnetic quantum number

(d)   

The Magnetic spin quantum number

1.2.3      Shape and orientation of

orbitals

1.2.4      Electron energy level

diagram

1.2.5      Electron configuration

of elements

1.2.6      Aufbau

or building up Principle

RULE-1

RULE-2

RULE-3:  Hund’s rule

1.2.7    Representing electron

configuration

(a)    Orbital notation method

(b)    Orbital diagram method

(c)     Short hand form

1.2.8     Valence shell

1.2.9      Some anomalous electron configurations

1.3              

Bonds between atoms and ions

1.3.1      Electronegativity

1.3.2      The Octet Rule

1.3.3      Classification of bonding

(A) Primary

atomic bonds

(i)           Ionic 

or electrovalent bond

(i)                 

Covalent bond

Bond parameters

(a)    Bond length

(b)    Bond angle

(c)     Band order

(d)    Polarity of bond

(e)    Bonding energy

(ii)               

Metallic bond

(B)    Secondary bonds

Electric dipole

(i)                 

Fluctuating dipole bond

(ii)               

Permanent dipole bond

(iii)             

Hydrogen (secondary) bond

Short answer questions

Multiple choice questions

Long answer questions

Contents of

chapter-2

Chapter-2       Electrical

behaviour of condensed matter

2.1       Introduction  

2.2       Electron

energy band theory

2.3       Insulator

2.4       Semiconductors

2.4.1      Intrinsic semiconductors

            (i)        Purification of natural

silicon

(a)          The trichorosliane method

(b)         Zone refining technique

(c)          Poly crystal to monocrystal

(d)           Monocrystal to wafers

(ii)               

Fermi energy and Fermi level

2.4.2

    Covalent band picture of

intrinsic  semiconductor

2.4.3      Doped or extrinsic

semiconductors

2.4.4      Doping technology

                (i)           Ion

implantation technology

(ii)         Diffusion technology

(iii)             

Doping at monocrystal growth stage

2.4.5      n and p type semiconductors

                (i)        n-type semiconductor

(ii)               

p-type semiconductor

2.4.6      Compensated semiconductor

2.4.7      Degenerate and non-degenerate

semiconductors

2.4.8      Direct and indirect semiconductor

2.4.9      Compound semiconductors

2.4.10    Current

flow in semiconductor

(i)           Drift current

(ii)         Diffusion current

2.4.11    Temperature

dependence of semiconductor resistivity

2.4.12    Theoretical

calculation of carrier concentration in a semiconductor

                (i)           Calculation of Fermi energy at T  0 K

2.4.13    Hall

effect

2.4.14    p-n junction

                (i)           Depletion layer

                (ii)          Biasing of p-n junction diode

(a)      Forward bias

(b)    Reverse bias

2.4.15   Some formulations

Solved examples

2.5       Conductors

2.5.1      Semi

metals and half metals

                (i)           Semi metal or metalloid

                (ii)          Half metal

Solved examples

2.6       Superconductor

2.6.1      Background

(i)           Meissner effect

(ii)         Magnetic field trapped in a

superconducting ring

(iii)             

Superconductor

type-I and type-II

(iv)             

Stable levitation

(v)               

High T

superconductors

(vi)             

Isotope effect

(vii)            

Cooper pair

2.6.2        

BCS theory of superconductivity

Problems

Short answer questions

Multiple choice questions

Long

answer questions


Contents of

Chapter -3

Chapter-3   Magnetic materials

3.1       Introduction

3.2        Electric current and magnetic field

3.3        Magnetic dipole moment

3.4        Magnetic moment of a charged particle

moving in a circular orbit

3.4.1    Classical to quantum

mechanics

3.5       Magnetic (dipole) moment of electron

(i)                 

Orbital motion of

electron

(ii)               

Spin motion of

electron

(iii)             

Magnetic moments of nuclear particles

3.6       Magnetic behaviour of solids

    3.6.1 Magnetic induction B

and magnetic field H

3.7       Classification of magnetic materials

    3.7.1 Diamagnetic materials

3.7.1.1  Langevin’s theory of

diamagnetism

    3.7.2 Paramagnetic materials

3.7.2.1  Langevin’s theory for paramagnetism

    3.7.3  Ferromagnetic materials

3.7.3.1  Weiss’s theory of ferromagnetism

(i)                

Exchange

interactions

(ii)               

Spin wave

(iii)             

Saturation

magnetization M

(iv)             

Magnetic anisotropy

(v)               

Magnetic hysteresis in

ferromagnetic substances

   3.7.4   Antiferromagnetic and ferrimagnetic materials

3.7.4.1 Ferrimagnetisms

3.8       Permanent magnetic

materials

                Ferrite

                Neodymium-iron-boron

compound

                Magnetic

rubber

Solved example

PROBLEMS

SHORT

ANSWER QUESTIONS

MULTIPLE

CHOICE QUESTIONS

LONG

ANSWER QESTIONS

Contents

of chapter-4

Chapter-4                     

X-rays, Dual nature of Matter, Failure of Classical Physics and Success

of quantum approach

4.1       INTRODUCTION


4. 2      Discovery, production and

properties of X-rays

4.2.1

Production of X-rays

4.2.2 Continuous X-rays

4.2.3 Characteristic X-rays

4.2.4 Mosley’s law

4.2.5 X-ray diffraction

4.2.6       

Some applications of X-rays

  (i)    Powder x-ray Diffraction (PXRD)

4.3       Dual nature of matter

4.3.1 Davisson and Germer experiment

(a) Velocity of de Broglie waves

(i) 

Phase velocity

(ii) Group velocity

(b) What makes matter waves

4.4      Some examples

of the failure of classical approach and success of quantum approach

4.4.1  Stability of the atom and the nature of atomic

spectra

4.4.2  Photo electric effect

       (a)

4.4.3   Quantum theory of photoelectric effect

4.4.4 Work function

4.4.5   Residual atom after the emission of photoelectron

4.5   Black body radiations and

their energy distribution

4.5.1 Wien’s displacement law

4.5.2   Failure of Wien’s

distribution law

4.5.3   Rayleigh and Jean’s

distribution law

4.5.4   Failure of Rayleigh Jeans

distribution

4.6      Quantum theory of

blackbody radiations

4.7       Compton scattering of

gamma rays

4.7.1    Compton

wavelength

4.7.2    Compton

scattering by the whole atom

4.7.3   

Photon interactions with matter

4.7.4   Some applications of

Compton scattering

4.8      Specific heat of solids

4.8.1    Dulong Petit law

4.8.2   Obtaining Dulong Petit law on the basis of classical physics

4.8.3   Problems with Dulong Petit law

4.9       Quantum approach to atomic

specific heat of solids

4.9.1    Einstein’s theory for specific heat of solids

4.9.2   Investigating the temperature dependence of Einstein’s equation

4.9.3   Drawbacks of Einstein’s model

4.9.4   Debye theory of atomic specific heat

4.9.5   Debye temperature

SOLVED

EXAMPLES

SHORT ANSWER QUESTIONS

MULTIPLE CHOICE

QUESTIONS


LONG ANSWER QUESTIONS

                        Contents of Chapter-5

Chapter-5                             

Introduction to Quantum Mechanics

5.1       Introduction

5.2       Postulates

of Quantum Mechanics

5.2.1      What

does wave function represent?

5.2.2      Properties of the

acceptable wave function

5.3       

5.4       Time evolution of a quantum mechanical

system

5.4.1      Schrodinger time

dependent equation

5.4.2      Some properties of

Schrodinger equation

5.5       Time independent Schrodinger equation

5.6        About operators

5.6.1      Null operator

5.6.2      Unity or Identity

operator

5.6.3      Linear operator               

5.6.4      Hermitian conjugate

and Hermitian operator

5.6.5      Anti hermitian

operator

5.6.6      Inverse Operator

5.6.7      Unitary operator

5.6.8      Some

properties of Hermitian operators

5.6.9      Algebra of operators

5.6.10    Operators for some

dynamical variables

Solved examples

5.7       Measurement of a dynamical variable in

quantum mechanics

5.7.1      Expectation value of a dynamic variable

Solved examples

5.8       Some one- dimensional

problems

5.8.1      Energy states: Bound and Scattering states

5.8.2      Quantum mechanical description of a free particle

5.8.3      Particle in a one-dimensional asymmetric infinite potential

well

5.8.3.1  Eigen function for a particle in an

one-dimensional infinite box             

5.8.3.2  Extension to two- dimensional and

three-dimensional infinite potentials

5.8.4    Potential barrier and

tunnelling

5.8.4.1  Boundary conditions

5.8.4.2  

Transmission coefficient

5.8.4.3   Reflection

Coefficient

5.9         

   Heisenberg uncertainty principle

5.10     Correspondence

principle and Ehrenfest’s theorem

Solved examples

Problems

Short answer

questions

Multiple choice

questions

Long answer

questions

Contents

of Chapter-6Chapter-6                                      QuantumStatistics

                

6.1       Introduction

6.2         Application of quantum statistics

(statistical mechanics) to an assembly of non interacting particles

6.3       Energy

levels, energy states, degeneracy and occupation number

6.3.1      Distinguishable and indistinguishable

particles

6.3.2      Macrostate

6.3.3      Microstates

6.3.4      Time evolution of an assembly

6.3.5      Postulate of equal a prior probability of

all microstates

6.4       Quantum statistical probability of a

Macrostate

6.4.1   System properties and average occupation

number

6.5       The Bose-Einstein statistical

distribution

6.6       The Fermi-Dirac statistical distribution

6.7       The Maxwell-Boltzmann statistical

distribution

6.8       Relation between entropy and

thermodynamic probability

6.9       The distribution function

Solved examples

Problems

Short answer questions

Multiple

choice questions

Long answer

questions

Contents

of chapter-7


Optical

Fiber Communication

7.1 Introduction

7.2 Advantages of

optical fiber communication

7.3 Basics of

optical fiber communication

    7.3.1  Optical fiber materials 

    7.3.2  Frequently used wavelengths in optical

transmission

    7.3.3  Principle of total internal reflection

    7.3.4  Types of fibers

    (a)  Single mode step-index fiber

    (b)  Multi mode step-index fiber

    (c)  Multimode graded-index fiber

  7.3.5    Rays guided through fiber

  7.3.6    Meridional and Skewed Rays

  7.3.7    Acceptance angle

  7.3.8    Numerical aperture (NA)

  7.3.9   

The V parameter

7.3.10   Attenuation and Dispersion

of optical signal

   (A)

Attenuation

(i) Intrinsic causes of attenuation

  (ii)

Extrinsic causes of attenuation

  (B)

Dispersion

(i)                 

Matertial dispersion

(ii)               

Modal dispersion

(iii)             

Waveguide dispersion

(iv)             

Nonlinear dispersion

7.4

Components of optical fiber network link

       (i)         Optical

transmitter

(ii)        Optical connector

       (iii)     

  Fiber cable

(iv)        Optical receiver

7.5

Applications of optical fiber transmission

Solved

example

PROBLEMS

SHORT ANSWER QUESTIONS

MULTIPLE CHOICE QUESTIONS

LONG ANSWER QESTIONS

Contents of

chapter-8

Chapter-8                       LASER TECHNOLOGY AND ITS

APPLICATIONS

8.1       Introduction

8.2       Electromagnetic radiations

8.3          Interaction of electromagnetic

radiation with matter

(a) Absorption

(b) Spontaneous emission or de-excitation

(c)  Radiationless

de-excitation

8.4       Einstein

prediction of stimulated emission

8.5          Stimulated (or

induced) emission of photons

8.5.1     Population inversion

8.5.2     Essential

requirements for laser action

8.5.3     Pumping

(a) Optical pumping

(b) Electric discharge or excitation by electrons

(c) Inelastic atom-atom collision 

(d) Thermal pumping

(e)Chemical pumping

(f)  Pumping based on direct

conversion of electrical energy into light

8.5.4        

Three and four level

lasing schemes

8.5.5      Optical resonator or

laser cavity

(i)                 

Gain coefficient of the

active medium

(ii)               

Threshold gain

coefficient for lasing

(iii)             

Axial or longitudinal

modes

(iv)             

Transverse modes

8.6       Special characteristics of laser light

(i)                 

Monocromaticity

(a)   

Natural line width

(b)   

Doppler broadening

(c)    

Recoil broadening

(d)   

Energy bands in solid

state lasers

(e)   

Laser groups from a

system

(ii)               

Coherence

(iii)              

Directionality

(iv)              

Irradiance

(v)               

Focusability

      8.7       Classification of laser

sources

(i)                 

According to the

physical state of the active medium

(ii)               

According to the mode of

operation

(iii)             

According to other

properties

8.7.1              Solid state

lasers

(i) Doped insulator rod type lasers

(a) Cr.ruby laser source

(b) Nd.YAG laser source

              (ii) Solid state semiconductor

diode laser source

      8.7.2              Dye (liquid) laser source

      8.7.3              Gas

laser sources

(i)           Atomic gas laser

(ii)          Carbon Dioxide Molecular gas laser

              (iii)        Argon ion laser

     8.7.4                 Excimer Laser

     8.7.5               

Mode locking  

     8.7.6               

Q- switching

8.8       Some

applications of Lasers

(a) Laser holography

              (b) Writing and reading of

digital data on compact disc (CD) using laser beam

              (c) Military/ defence/ armament

applications of laser

(d) Industrial and commercial

applications

(e) Medical applications

SOLVED

EXAMPLES

PROBLEMS

SHORT

ANSWER QUESTIONS

MULTIPLE

CHOICE QUESTIONS

LONG

ANSWER QESTIONS

Contents

of chapter 9

Nanomaterials

 9.1      Introduction

9.2       Special features of nanomaterials

(i)                 

Large surface area

(ii)               

Colour of light

emitted/absorbed depends on the size of the nano structure

(iii)             

Enhancement  in mechanical properties of nanomaterials

(iv)            

Electronic properties of

nanomaterials

(v)               

Thermal behaviour of

nanostructures

(vi)             

Magnetic behaviour of

nanomaterials

9.3       Technology used for the study of

nanostructures

        (a)       

Scanning tunnelling microscope (STM)

        (b)       

Atomic force microscope (AFM)

        (c)         Transmission electron microscope (TEM)

        (d)        Optical tweezers (OT)

9.4       Techniques of producing nanostructures

    9.4.1  Bottom-up techniques

(i)           Gas phase methods

(a)

Chemical vapour deposition (CVD)

(b)

Plasma arcing

               (ii)         Liquid phase methods

(c) Sol-gel synthesis

       (iii)        Solid and Liquid phase methods

                     (d) Self-Assembly

9.4.2      Top down techniques

of fabricating nanostructures

(i)           Mechanical

milling (MM)

(ii)         Laser ablation

(iii)        Nanolithography

and etching

(iv)          Sputtering

(v)          Electric explosion

of wire

9.5       Carbon

nanotubes

(i) Discovery

(ii) Characteristics of carbon nanotubes

(iii) Applications of carbon nanotubes

(a)   

Electronics

(b)   

Energy storage

(c)    

Electron emitter

(d)   

Material properties

(e)   

Filters         

(f)    

Biomedical applications

(g)   

Others

SHORT ANSWER

QUESTIONS

MULTIPLE CHOICE

QUESTIONS

LONG ANSWER QUESTIONS

Contents of chapter-10

Chapter-10             Sustainability

and Sustainable energy options

10.1     Introduction

10.2     Social sustainability

10.3        

Economical sustainability

10.4        

    Environmental

sustainability

10.4.1                   Atmosphere

(i)                 

Greenhouse effect

(ii)               

Sources of greenhouse

gases

10.4.2    Mechanism of trapping

heat by greenhouse gases

10.4.3    Global greenhouse gas

emission by human activities

(a) 

Carbon dioxide gas CO

(b)  Methane CH

(c)  Nitrous oxide N2

(d)  Fluorinated gases F-gases

10.5     Global warming

10.5.1    The carbon footprint

10.5.2    Reducing and

off-setting carbon footprints

10.6     Projections on average temperature rise of

1.5C above preindustrial levels

10.7     United

Nation’s efforts

10.7.1    Outlook Scenarios: Computer model based scenarios

prepared by IEA

10.8     Sustainability of land mass

10.9     Sustainability of water bodies

10.10.1 Sustainability of river and other water systems

10.10   Some efforts for improving the sustainability

of environment

10.10.1                A unique

fight against climate change; the ice stupa or artificial glacier

10.11   Sustainable energy

10.11.1 Units of energy

10.11.2 Primary energy

10.11.3 Global energy

production, an overview

10.11.4 Electricity; the most

convenient form of energy

10.11.5 Cost of electricity by

source: Cost metrics

10.11.6 Energy densities

associated with prevalent energy sources

10.11.7 Problem with present

energy mix

10.12   Some clean and sustainable sources

10.12.1 Hydrogen as an

alternative source of energy

10.13   Hydrogen fuel cell

(a)    Polymer

Electrolyte Membrane (PEM) hydrogen fuel cell

(b)    Alkaline

fuel cells (AFCs)

(c)     Phosphoric

Acid Fuel Cells (PAFCs)

(d)   

Molten Carbonate Fuel Cells (MCFCs)

(e)   

Direct Methanol Fuel Cells (DMFCs)     

(f)    

Solid Oxide Fuel Cells

(SOFCs)

(g)   

Reversible Fuel Cells

10.14   Nuclear Energy

10.14.1 Drawbacks of fission

reactor

10.14.2 Plus points of fission

reactor

10.14.3                Accelerator driven energy

amplifier

10.15   Terrain dependent renewable energy sources

10.15.1 Geothermal energy

10.15.2 Hydroelectric energy

         (a)  Advantages

          (b)  Disadvantages

10.16   Wind energy

10.17   Solar energy

10.17.1 Solar thermal

10.17.2 Solar Photo Voltaic

(PV) Technology

10.18   Energy from ocean

10.18.1 Tidal energy

10.18.2 Ocean thermal energy

10.19   Portable sources of sustainable energy

10.19.1 Lithium ion battery

10.19.2 Super capacitor

Short answer

questions

Multiple choice

questions

Long answer

questions


R. Prasad is an emeritus professor of physics, formerly Dean of the Faculty of Science and Chairman of the Department of Physics, Aligarh Muslim University (AMU), India. He has more than 40 years of experience teaching nuclear physics, thermal physics, and electronics to upper-level university students. He has supervised around a dozen Ph.D thesises and has published more than 100 peer-reviewed research papers in renowned international journals and is author of several books spanning the disciplines of classical, quantum, thermal and nuclear physics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.