E-Book, Englisch, 345 Seiten
Pourquie HOX Genes
1. Auflage 2009
ISBN: 978-0-08-092312-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 345 Seiten
ISBN: 978-0-08-092312-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A subgroup of homeobox genes, which play an important role in the developmental processes of a variety of multicellular organisms, Hox genes have been shown to play a critical role in vertebrate pattern formation. Hox genes can be thought of as general purpose control genes-that is, they are similar in many organisms and direct the same processes in a variety of organisms, from mouse, to fly, to human.
* Provides researchers an overview and synthesis of the latest research findings and contemporary thought in the area
* Inclusion of chapters that discuss the evolutionary development of a wide variety of organisms
* Gives researchers and clinicians insight into how defective Hox genes trigger developmental abnormalities in embryos
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Current Topics in Devolopmental Biology;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Preface;12
7;Chapter 1: Chapter Four The Bithorax Complex of;16
7.1;1. Pseudoallelism and the History of the BX-C;17
7.2;2. The Ed Lewis Model;18
7.3;3. Molecular Genetics of the BX-C;21
7.4;4. Initiation and Maintenance Phases in BX-C Regulation;24
7.5;5. Initiators, Maintenance Elements, and Segment-Specific Enhancers;25
7.6;6. Organization of the Cis-Regulatory Regions into Chromosomal Domains;28
7.7;7. Chromatin Boundaries Flank the Parasegment-Specific Domains;31
7.8;8. Boundaries Versus Insulators and Long-Distance Interactions;32
7.9;9. Mixing the Old and the New;36
7.10;10. Colinearity in the BX-C;39
7.11;References;42
8;Chapter 2: Chapter Seven Evolution of the;50
8.1;1. Introduction;51
8.2;2. The Lewis Model;52
8.3;3. The Developmental and Evolutionary Ground State;54
8.4;4. Mechanisms of Epistatic Hox-Hox Interactions;61
8.5;5. The Evolutionary Origin of the Hox Cluster;62
8.6;6. Duplication and Divergence as a General Evolutionary Principle;70
8.7;7. Conclusion;71
8.8;Acknowledgments;72
8.9;References;72
9;Chapter 3: Chapter Three Hox Specificity: Unique Roles for Cofactors and Collaborators;78
9.1;1. An Introduction to the Problem;79
9.2;2. Too Many Binding Sites, Not Enough Specificity;80
9.3;3. How Specific Do Hox Proteins Need to be?;82
9.4;4. Hox Cofactors;87
9.5;5. What Do In Vivo Hox-Binding Sites Look Like?;93
9.6;6. Insights into Hox Specificity from Structural Studies;97
9.7;7. Activity Regulation of Hox Proteins: The Role of Hox Collaborators;102
9.8;8. Insights into Hoxasome Function from cis-Regulatory Element Architecture;104
9.9;9. Conclusions;106
9.10;Acknowledgments;106
9.11;References;106
10;Chapter 4: Hox Genes and Segmentation of theVertebrate Hindbrain;118
10.1;1. Introduction;119
10.2;2. Hindbrain Segmentation;120
10.3;3. Expression of Hox Genes in the Hindbrain;126
10.4;4. Hox Gene Regulatory Networks in Hindbrain Segmentation;129
10.5;Acknowledgments;141
10.6;References;141
11;Chapter 5: Hox Genes in Neural Patterning and Circuit Formation in the Mouse Hindbrain;154
11.1;1. Introduction;155
11.2;2. Basic Anatomical Background and Cellular Mechanisms of Hindbrain Development;155
11.3;3. The Impact of Segmental Patterning on Sensory Nuclei Columnar Organization and Projection Patterns;157
11.4;4. Rostrocaudal Profiles and Sequential Phases of Hox Gene Expression: From Progenitor Patterning to Postmitotic Neuron Connectiv;159
11.5;5. Hox Gene Function: Lessons from Mouse Knockouts;163
11.6;Acknowledgments;175
11.7;References;175
12;Chapter 6: Hox Networks and the Origins of Motor Neuron Diversity;184
12.1;1. Introduction;185
12.2;2. Spinal Motor Neuron Diversity;186
12.3;3. Hox Expression in Developing Motor Neurons;191
12.4;4. Hox Proteins Determine Motor Neuron Columnar Identity and Connectivity;194
12.5;5. Hox Transcriptional Networks and the Specification of Motor Pool Identities;197
12.6;6. Restriction and Refinement of Hox Activities During Motor Neuron Differentiation;203
12.7;7. Conclusions;209
12.8;References;210
13;Chapter 7: Establishment of Hox Vertebral Identities in the Embryonic Spine Precursors;216
13.1;1. Introduction;217
13.2;2. Initial Hox Gene Activation in Paraxial Mesoderm Precursors in the Epiblast;219
13.3;3. Molecular Control of Temporal Colinearity;225
13.4;4. Converting Temporal into Spatial Colinearity;227
13.5;5. Posterior Prevalence is Required for the Establishment of Spatial Colinearity;228
13.6;6. Spatial Dissociation of Segmentation and Hox Gene Activation Programs;232
13.7;7. Definitive Positioning of Hox Gene Boundaries in the Somites;234
13.8;8. Positioning of Hox Gene Boundaries in the Forming Segments;238
13.9;9. Conclusion: Determination of the Axial Fate of Vertebral Precursors;240
13.10;Acknowledgments;241
13.11;References;241
14;Chapter 8: Hox, Cdx, and Anteroposterior Patterning in the Mouse Embryo;250
14.1;1. The Hox and Cdx Gene Family;251
14.2;2. Similarities and Differences in the Two Expression Phases of Hox and Cdx Genes in the Mouse Embryo;253
14.3;3. Hox and Cdx Gene Expression and A-P Patterning;257
14.4;4. Conclusion;263
14.5;Acknowledgments;265
14.6;References;265
15;Chapter 9: Hox Genes and VertebrateAxial Pattern;272
15.1;1. Introduction;273
15.2;2. Hox Genes and the Axial Skeleton;274
15.3;3. Hox Function in Axial Patterning;278
15.4;4. Conclusions-The Nature of the Mammalian "Hox Code";285
15.5;References;288
16;Subject Index;294
17;Contents of Previous Volumes;300
18;Color plates;330




