Positselski | Homological Algebra of Semimodules and Semicontramodules | Buch | 978-3-0348-0313-7 | sack.de

Buch, Englisch, Band 70, 352 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g

Reihe: Monografie Matematyczne

Positselski

Homological Algebra of Semimodules and Semicontramodules

Semi-infinite Homological Algebra of Associative Algebraic Structures
2010
ISBN: 978-3-0348-0313-7
Verlag: Springer

Semi-infinite Homological Algebra of Associative Algebraic Structures

Buch, Englisch, Band 70, 352 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g

Reihe: Monografie Matematyczne

ISBN: 978-3-0348-0313-7
Verlag: Springer


ThesubjectofthisbookisSemi-In?niteAlgebra,ormorespeci?cally,Semi-In?nite Homological Algebra. The term “semi-in?nite” is loosely associated with objects that can be viewed as extending in both a “positive” and a “negative” direction, withsomenaturalpositioninbetween,perhapsde?nedupto a“?nite”movement. Geometrically, this would mean an in?nite-dimensional variety with a natural class of “semi-in?nite” cycles or subvarieties, having always a ?nite codimension in each other, but in?nite dimension and codimension in the whole variety [37]. (For further instances of semi-in?nite mathematics see, e. g., [38] and [57], and references below. ) Examples of algebraic objects of the semi-in?nite type range from certain in?nite-dimensional Lie algebras to locally compact totally disconnected topolo- cal groups to ind-schemes of ind-in?nite type to discrete valuation ?elds. From an abstract point of view, these are ind-pro-objects in various categories, often - dowed with additional structures. One contribution we make in this monograph is the demonstration of another class of algebraic objects that should be thought of as “semi-in?nite”, even though they do not at ?rst glance look quite similar to the ones in the above list. These are semialgebras over coalgebras, or more generally over corings – the associative algebraic structures of semi-in?nite nature. The subject lies on the border of Homological Algebra with Representation Theory, and the introduction of semialgebras into it provides an additional link with the theory of corings [23], as the semialgebrasare the natural objects dual to corings.

Positselski Homological Algebra of Semimodules and Semicontramodules jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Introduction.- 0 Preliminaries and Summary.- 1 Semialgebras and Semitensor Product.- 2 Derived Functor SemiTor.- 3 Semicontramodules and Semihomomorphisms.- 4 Derived Functor SemiExt.- 5 Comodule-Contramodule Correspondence.- 6 Semimodule-Semicontramodule Correspondence.- 7 Functoriality in the Coring.- 8 Functoriality in the Semialgebra.- 9 Closed Model Category Structures.- 10 A Construction of Semialgebras.- 11 Relative Nonhomogeneous Koszul Duality.- Appendix A Contramodules over Coalgebras over Fields.- Appendix B Comparison with Arkhipov's Ext^{\infty/2+*} and Sevostyanov's Tor_{\infty/2+*}.- Appendix C Semialgebras Associated to Harish-Chandra Pairs.- Appendix D Tate Harish-Chandra Pairs and Tate Lie Algebras.- Appendix E Groups with Open Profinite Subgroups.- Appendix F Algebraic Groupoids with Closed Subgroupoids.- Bibliography.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.