E-Book, Englisch, 636 Seiten, Web PDF
Poole / Farach / Creswick Superconductivity
1. Auflage 2013
ISBN: 978-1-4832-1934-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 636 Seiten, Web PDF
ISBN: 978-1-4832-1934-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high temperature superconductors. The band theory; type II superconductivity and magnetic properties; and the intermediate and mixed states are also considered. The book further tackles critical state models; various types of tunneling and the Josephson effect; and other transport properties. The text concludes by looking into spectroscopic properties. Physicists and astronomers will find the book invaluable.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Superconductivity;4
3;Copyright Page ;5
4;Table of Contents;6
5;Preface;14
6;Chapter 1. Properties of the Normal State;18
6.1;I. Introduction;18
6.2;II. Conduction Electron Transport;18
6.3;III. Chemical Potential and Screening;21
6.4;IV. Electrical Conductivity;22
6.5;V. Frequency Dependent Electrical Conductivity;23
6.6;VI. Electron–Phonon Interaction;24
6.7;VII. Resistivity;24
6.8;VIII. Thermal Conductivity;25
6.9;IX. Fermi Surface;25
6.10;X. Energy Gap and Effective Mass;27
6.11;XI. Electronic Specific Heat;28
6.12;XII. Phonon Specific Heat;29
6.13;XIII. Electromagnetic Fields;31
6.14;XIV. Boundary Conditions;32
6.15;XV. Magnetic Susceptibility;33
6.16;XVI. Hall Effect;35
6.17;Further Reading;37
6.18;Problems;37
7;Chapter 2. The Phenomenon of Superconductivity;38
7.1;I. Introduction;38
7.2;II. A Brief History;38
7.3;III. Resistivity;40
7.4;IV. Zero Resistance;50
7.5;V. Transition Temperature;52
7.6;VI. Perfect Diamagnetism;55
7.7;VII. Fields inside a Superconductor;58
7.8;VIII. Shielding Current;59
7.9;IX. Hole in Superconductor;61
7.10;X. Perfect Conductivity;64
7.11;XI. Transport Current;65
7.12;XII. Critical Field and Current;66
7.13;XIII. Temperature Dependences;68
7.14;XIV. Concentration of Super Electrons;70
7.15;XV. Critical Magnetic Field Slope;70
7.16;XVI. Critical Surface;71
7.17;Further Reading;74
7.18;Problems;74
8;Chapter 3. The Classical Superconductors;76
8.1;I. Introduction;76
8.2;II. Elements;77
8.3;III. Physical Properties of Superconducting Elements;80
8.4;IV. Compounds;83
8.5;V. Alloys;83
8.6;VI. Miedema's Empirical Rules for Alloys;88
8.7;VII. Compounds with the NaCl Structure;90
8.8;VIII. Type A15 Compounds;91
8.9;IX. Laves Phases;94
8.10;X. Chevrel Phases;95
8.11;XI. Heavy Electron Systems;97
8.12;XII. Charge-Transfer Organics;101
8.13;XIII. Chalcogenides and Oxides;103
8.14;XIV. Barium Lead–Bismuth Oxide Perovskite;104
8.15;XV. Barium-Potassium Bismuth-Oxide Cubic Perovskite;104
8.16;XVI. Buckminsterfullerenes;104
8.17;XVII. Borocarbides;105
8.18;Further Reading;106
8.19;Problems;106
9;Chapter 4. Thermodynamic Properties;108
9.1;I. Introduction;108
9.2;II. Specific Heat above Tc;109
9.3;III. Discontinuity at Tc;113
9.4;IV. Specific Heat below Tc;114
9.5;V. Density of States and Debye Temperature;115
9.6;VI. Thermodynamic Variables;116
9.7;VII. Thermodynamics of a Normal Conductor;117
9.8;VIII. Thermodynamics of a Superconductor;118
9.9;IX. Superconductor in Zero Field;122
9.10;X. Superconductor in a Magnetic Field;123
9.11;XI. Normalized Thermodynamic Equations;128
9.12;XII. Specific Heat in a Magnetic Field;129
9.13;XIII. Evaluating the Specific Heat;131
9.14;XIV. Order of the Transition;133
9.15;XV. Thermodynamic Conventions;134
9.16;XVI. Concluding Remarks;134
9.17;Further Reading;135
9.18;Problems;135
10;Chapter 5. Ginzburg–Landau Theory;138
10.1;I. Introduction;138
10.2;II. Order Parameter;139
10.3;III. Ginzburg–Landau Equations;140
10.4;IV. Zero-Field Case Deep inside Superconductor;141
10.5;V. Zero-Field Case near Superconductor Boundary;143
10.6;VI. Fluxoid Quantization;144
10.7;VII. Penetration Depth;145
10.8;VIII. Critical Current Density;149
10.9;IX. London Equations;150
10.10;X. Exponential Penetration;150
10.11;XI. Normalized Ginzburg-Landau Equations;154
10.12;XII. Type I and Type II Superconductivity;156
10.13;XIII. Upper Critical Field Bc2;157
10.14;XIV. Quantum Vortex;159
10.15;Further Reading;163
10.16;Problems;164
11;Chapter 6. BCS Theory;166
11.1;I. Introduction;166
11.2;II. Cooper Pairs;167
11.3;III. BCS Order Parameter;169
11.4;IV. Generalized BCS Theory;171
11.5;V. Singlet Pairing in a Homogeneous Superconductor;177
11.6;VI. Self-Consistent Equation for the Energy Gap;180
11.7;VII. Response of a Superconductor to a Magnetic Field;185
11.8;Further Reading;188
12;Chapter 7. Perovskite and Cuprate Crystallographic Structures;190
12.1;I. Introduction;190
12.2;II. Perovskites;191
12.3;III. Cubic Barium Potassium Bismuth Oxide;195
12.4;IV. Barium Lead Bismuth Oxide;196
12.5;V. Perovskite-Type Superconducting Structures;196
12.6;VI. Aligned YBa2Cu3O7;199
12.7;VII. Body Centering;204
12.8;VIII. Body-Centered La2CuO4 and Nd2CuO4;205
12.9;IX. Body-Centered BiSrCaCuO and TIBaCaCuO;211
12.10;X. Aligned HgBaCaCuO;215
12.11;XI. Buckminsterfullerenes;218
12.12;XII. Symmetries;220
12.13;XIII. Crystal Chemistry;221
12.14;XIV. Comparison with Classical Superconductor Structures;223
12.15;XV. Conclusions;223
12.16;Further Reading;224
12.17;Problems;224
13;Chapter 8. Hubbard Models and Band Structure;226
13.1;I. Introduction;226
13.2;II. Reciprocal Space and Brillouin Zone;227
13.3;III. Free Electron Bands in Two Dimensions;228
13.4;IV. Nearly Free Electron Bands;231
13.5;V. Fermi Surface in Two Dimensions;232
13.6;VI. Electron Configurations;234
13.7;VII. Hubbard Models;239
13.8;VIII. Transition Metal Elements;251
13.9;IX. A15 Compounds;251
13.10;X. Buckminsterfullerenes;253
13.11;XI. BaPb1_xBixO3 System;254
13.12;XII. Ba1_xKxBiO3 System;255
13.13;XIII. Band Structure of YBa2Cu3O7;256
13.14;XIV. Band Structure of (La1_xSrx)2CuO4;260
13.15;XV. Bismuth and Thallium Compounds;266
13.16;XVI. Mercury Compounds;267
13.17;XVII. Fermi Liquids;272
13.18;XVIII. Fermi Surface Nesting;273
13.19;XIX. Charge-Density Waves, Spin- Density Waves, and Spin Bags;273
13.20;XX. Mott-Insulator Transition;274
13.21;XXI. Anderson Interlayer Tunneling Scheme;275
13.22;XXII. Comparison with Experiment;276
13.23;XXIII. Discussion;278
13.24;Further Reading;280
13.25;Problems;280
14;Chapter 9. Type II Superconductivity;282
14.1;I. Introduction;282
14.2;II. Internal and Critical Fields;283
14.3;III. Vortices;290
14.4;IV. Vortex Anisotropies;299
14.5;V. Individual Vortex Motion;308
14.6;VI. Flux Motion;316
14.7;VII. Fluctuations;322
14.8;VIII. Quantized Flux;325
14.9;Further Reading;327
14.10;Problems;327
15;Chapter 10. Magnetic Properties;330
15.1;I. Introduction;330
15.2;II. Susceptibility;331
15.3;III. Magnetization and Magnetic Moment;331
15.4;IV. Magnetization Hysteresis;333
15.5;V. Zero Field Cooling and Field Cooling;334
15.6;VI. Granular Samples and Porosity;337
15.7;VII. Magnetization Anisotropy;338
15.8;VIII. Measurement Techniques;339
15.9;IX. Comparing Susceptibility and Resistivity Results;340
15.10;X. Ellipsoids in Magnetic Fields;341
15.11;XI. Demagnetization Factors;342
15.12;XII. Measured Susceptibilities;343
15.13;XIII. Sphere in a Magnetic Field;344
15.14;XIV. Cylinder in a Magnetic Field;346
15.15;XV. ac Susceptibility;348
15.16;XVI. Temperature-Dependent Magnetism;350
15.17;XVII. Pauli Limit and Upper Critical Fields;354
15.18;XVIII. Ideal Type II Superconductor;356
15.19;XIX. Magnets;358
15.20;Further Reading;358
15.21;Problems;359
16;Chapter 11. Intermediate and Mixed States;360
16.1;I. Introduction;360
16.2;II. Intermediate State;361
16.3;III. Surface Fields and Intermediate- State Configuration;361
16.4;IV. Type I Ellipsoid;363
16.5;V. Susceptibility;365
16.6;VI. Gibbs Free Energy for the Intermediate State;365
16.7;VII. Boundary-Wall Energy and Domains;367
16.8;VIII. Thin Film in Applied Field;369
16.9;IX. Domains in Thin Films;371
16.10;X. Current-Induced Intermediate State;374
16.11;XI. Mixed State in Type II Superconductors;379
16.12;Further Reading;379
16.13;Problems;379
17;Chapter 12. Critical States;382
17.1;I. Introduction;382
17.2;II. Current–Field Relations;383
17.3;III. Critical-State Models;385
17.4;IV. Fixed Pinning Model;386
17.5;V. Bean Model;388
17.6;VI. Reversed Critical States and Hysteresis;395
17.7;VII. Kim Model;410
17.8;VIII. Comparison of Critical-State Models with Experiment;414
17.9;IX. Concluding Remarks;416
17.10;Further Reading;417
17.11;Problems;417
18;Chapter 13. Tunneling;418
18.1;I. Introduction;418
18.2;II. The Phenomenon of Tunneling;418
18.3;III. Energy Level Schemes;420
18.4;IV. Tunneling Processes;421
18.5;V. Quantitative Treatment of Tunneling;425
18.6;VI. Tunneling Measurements;435
18.7;VII. Josephson Effect;443
18.8;VIII. Magnetic Field and Size Effects;454
18.9;Further Reading;469
18.10;Problems;469
19;Chapter 14. Transport Properties;472
19.1;I. Introduction;472
19.2;II. Inductive Superconducting Circuits;472
19.3;III. Current Density Equilibration;476
19.4;IV. Critical Current;478
19.5;V. Magnetoresistance;481
19.6;VI. Hall Effect;487
19.7;VII. Thermal Conductivity;490
19.8;VIII. Thermoelectric and Thermomagnetic Effects;496
19.9;IX. Photoconductivity;507
19.10;X. Transport Entropy;510
19.11;Further Reading;510
19.12;Problems;510
20;Chapter 15. Spectroscopic Properties;512
20.1;I. Introduction;512
20.2;II. Vibrational Spectroscopy;513
20.3;III. Optical Spectroscopy;524
20.4;IV. Photoemission;527
20.5;V. X-ray Absorption Edges;535
20.6;VI. Inelastic Neutron Scattering;541
20.7;VII. Positron Annihilation;545
20.8;VIII. Magnetic Resonance;546
20.9;Further Reading;563
20.10;Problems;563
21;References;566
22;Appendix;608
23;Index;618