Pontarotti | Evolutionary Biology | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 402 Seiten

Pontarotti Evolutionary Biology

Concept, Modeling, and Application
1. Auflage 2009
ISBN: 978-3-642-00952-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Concept, Modeling, and Application

E-Book, Englisch, 402 Seiten

ISBN: 978-3-642-00952-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Since 1997, scientists of different disciplines sharing a deep interest in concepts and knowledge related to evolutionary biology have held the annual Evolutionary Biology Meetings in Marseille in order to discuss their research and promote collaboration. Lately scientists especially focusing on applications have also joined the group. This book starts with the report of the '12th Evolutionary Biology Meeting', which gives a general idea of the meeting's epistemological stance. This is followed by 22 chapters, a selection of the most representative contributions, which are grouped under the following four themes: Part I Concepts and Knowledge - Part II Modelization - Part III Applied Evolutionary Biology - Part IV Applications in Other Fields -Part IV transcends the field of biology, presenting applications of evolutionary biology in economics and astronomy.

Pontarotti Evolutionary Biology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;184822_1_En_FM1_OnlinePDF;2
1.1;Outline placeholder;1
1.1.1;Preface;5
1.2;Preface;5
1.2.1;Meeting Report: 12th Evolutionary Biology Meeting in Marseille;6
1.3;Meeting Report: 12th Evolutionary Biology Meeting in Marseille;5
1.3.1;Contents;6
1.4;Contents;5
1.4.1;Contributors;6
1.5;Contributors;5
2;184822_1_En_1_Chapter_OnlinePDF;20
2.1;Chapter Chapter 1: Spontaneous Generation Revisited at the Molecular Level;21
2.1.1;1.1Introduction;21
2.1.2;1.2From HCN to Nucleotides;22
2.1.2.1;1.2.1From Formamide to Nucleic Bases;22
2.1.2.2;1.2.2From Nucleic Bases to Acyclo-Nucleosides;23
2.1.2.3;1.2.3From Nucleosides to Nucleotides;24
2.1.2.4;1.2.4Formamide;25
2.1.2.5;1.2.5Water;25
2.1.3;1.3Stability;26
2.1.3.1;1.3.1Stability of the Relevant Bonds;26
2.1.3.2;1.3.2pH and Sequence Context;28
2.1.3.3;1.3.3Minerals and Protection;31
2.1.4;1.4Polymerization;32
2.1.4.1;1.4.1Nonenzymatic Syntheses in Water;32
2.1.4.2;1.4.2Ligation of Oligomers as a Way-Out from the Futile Cycle of Syntheses/Degradations;33
2.1.5;1.5Conclusion;37
2.1.6;References;38
3;184822_1_En_2_Chapter_OnlinePDF;41
3.1;Chapter Chapter 2: Minimal Cell Model to Understand Origin of Life and Evolution;41
3.1.1;2.1Introduction;41
3.1.2;2.2Spontaneous Movement of Amphiphilic Self-assemblies;42
3.1.2.1;2.2.1Self-winding Helix of Oleic Acid;43
3.1.2.2;2.2.2Self-propelled Oil Droplets;46
3.1.2.2.1;2.2.2.1Self-propelled Oil Droplets from Lipophilic Precursor of Surfactant (Oleic Acid-Oleate);46
3.1.2.2.2;2.2.2.2Self-propelled Oil Droplets Consuming Surfactant as Fuel;47
3.1.3;2.3Dynamics of Self-reproduction Exhibited by Giant Vesicles;49
3.1.3.1;2.3.1Self-reproducing Vesicular System of the Nutrient-Containing Type;51
3.1.3.2;2.3.2Robustly Reproducing Giant Vesicular System;52
3.1.4;2.4Population Analysis of Self-reproducing Giant Vesicles by Flow Cytometry;54
3.1.4.1;2.4.1Protocol of Flow Cytometric Analysis;54
3.1.4.2;2.4.2Population Analysis of Self-reproducing Vesicles;55
3.1.4.3;2.4.3Self-reproducing Vesicles as a Molecular Model of Evolution;57
3.1.5;2.5Self-replication of Informational Substances in a Giant Vesicle;58
3.1.5.1;2.5.1Enzymatic Reaction in Vesicle;58
3.1.5.2;2.5.2Performance of Polymerase Chain Reaction in GV;58
3.1.5.3;2.5.3Flow Cytometric Analysis of PCR in Vesicles;60
3.1.5.4;2.5.4Meaning of Encapsulation in Enzymatic Reactions;61
3.1.6;2.6Coupling between Self-reproduction of GV and Self-replication of DNA;63
3.1.6.1;2.6.1Design and Preparation of DNA-cholesterol Conjugate;63
3.1.6.2;2.6.2Replication of DNA Inside GV Carrying DNA-Cholesterol Conjugate;64
3.1.6.3;2.6.3Partition Mechanism in Cell Division of Escherichia coli;65
3.1.7;2.7Evolution Towards Artificial Cell;66
3.1.8;References;67
4;184822_1_En_3_Chapter_OnlinePDF;69
4.1;Chapter Chapter 3: New Fossils and New Hope for the Origin of Angiosperms*;69
4.1.1;3.1Introduction;69
4.1.2;3.2Definition of Flower and Angiosperm;70
4.1.3;3.3Acquisition of the Features;73
4.1.4;3.4Examples of Early Angiosperms;74
4.1.4.1;3.4.1Chaoyangia;74
4.1.4.1.1;3.4.1.1Brief History;74
4.1.4.1.2;3.4.1.2Discussion;74
4.1.4.1.3;3.4.1.3Diagnosis;75
4.1.4.1.4;3.4.1.4Description;75
4.1.4.2;3.4.2Callianthus;77
4.1.4.2.1;3.4.2.1Brief History;77
4.1.4.2.2;3.4.2.2Discussion;77
4.1.4.2.3;3.4.2.3Diagnosis;77
4.1.4.2.4;3.4.2.4Description;78
4.1.4.3;3.4.3Xingxueanthus;79
4.1.4.3.1;3.4.3.1Brief History;79
4.1.4.3.2;3.4.3.2Discussion;79
4.1.4.3.3;3.4.3.3Diagnosis;80
4.1.4.3.4;3.4.3.4Description;80
4.1.4.4;3.4.4Schmeissneria;81
4.1.4.4.1;3.4.4.1Brief History;81
4.1.4.4.2;3.4.4.2Discussion;82
4.1.4.4.3;3.4.4.3Diagnosis;82
4.1.4.4.4;3.4.4.4Description;83
4.1.5;3.5Conclusion;84
4.1.6;References;86
5;184822_1_En_4_Chapter_OnlinePDF;89
5.1;Chapter Chapter 4: Vertebrate Evolution: The Strange Case of Gymnophionan Amphibians;89
5.1.1;4.1Introduction;89
5.1.2;4.2Morphological Data;90
5.1.2.1;4.2.1General Anatomy;90
5.1.2.2;4.2.2Integument;91
5.1.2.3;4.2.3Skeleton;91
5.1.2.4;4.2.4Brain;92
5.1.2.5;4.2.5Sense Organs;92
5.1.2.6;4.2.6Digestive Tract;93
5.1.2.7;4.2.7Respiratory System;94
5.1.2.8;4.2.8Heart;94
5.1.2.9;4.2.9Immune System;94
5.1.2.10;4.2.10Excretion System;94
5.1.2.11;4.2.11Endocrine Organs;95
5.1.2.12;4.2.12Male Genital Tract;95
5.1.2.13;4.2.13Female Genital Tract;96
5.1.2.14;4.2.14Development and Metamorphosis;96
5.1.3;4.3Biogeography;97
5.1.4;4.4Fossils;97
5.1.4.1;4.4.1Molecular Data;97
5.1.5;4.5Systematic Position;97
5.1.5.1;4.5.1Internal Classification;98
5.1.5.2;4.5.2Position of Gymnophiona Among Vertebrates;98
5.1.6;4.6Conclusion;100
5.1.7;References;101
6;184822_1_En_5_Chapter_OnlinePDF;108
6.1;Chapter Chapter 5: The Evolution of Morphogenetic Signalling in Social Amoebae;108
6.1.1;5.1Introduction;108
6.1.2;5.2The Life Cycle of D. discoideum;110
6.1.2.1;5.2.1Cell Differentiation and Morphogenesis;110
6.1.2.2;5.2.2Signals that Control D. discoideum Development;111
6.1.3;5.3Phenotypic Evolution in the Social Amoebae;115
6.1.4;5.4The Evolution of cAMP Signalling;117
6.1.4.1;5.4.1Extracellular c117
6.1.4.2;5.4.2Intracellular c119
6.1.5;5.5Conclusions;121
6.1.6;References;122
7;184822_1_En_6_Chapter_OnlinePDF;125
7.1;Chapter Chapter 6: On the Surprising Weakness of Pancreatic Beta-Cell Antioxidant Defences: An Evolutionary Perspective;125
7.1.1;6.1Introduction;126
7.1.1.1;6.1.1Beta-Cellsbeta-cells and Glucose Homeostasisglucosehomeostasis;126
7.1.1.2;6.1.2Reactive Oxygen Speciesreactive oxygen species: Effects on Beta-Cells;128
7.1.1.3;6.1.3Antioxidantantioxidant Defences in Beta-Cells Versus Other Cell Types;129
7.1.1.4;6.1.4Beta-Cell Antioxidant Defences: Gender Differences;130
7.1.2;6.2Concepts from an Evolutionary Hypothesis;130
7.1.3;6.3Robustnessrobustness, Homeostasishomeostasis and Allostasisglucoseallostasis;134
7.1.4;6.4Clinical Implications and Future Directions;135
7.1.5;References;137
8;184822_1_En_7_Chapter_OnlinePDF;142
8.1;Chapter Chapter 7: The Importance of Transpositions and Recombination to Genome Instability According hobo-Element Distribution;142
8.1.1;7.1Introduction;143
8.1.2;7.2Material and Methods;144
8.1.3;7.3Results and Discussion;144
8.1.3.1;7.3.1The Hobo Sequences with Preserved Activity Are More Conserved than the Inactive Sequences;144
8.1.3.2;7.3.2The Hobo Elements from Different Chromosomes Display Less Similarity than the Neighboring Hobos;146
8.1.3.3;7.3.3Analysis of the Number of Hypothetical Hobo Insertion Sites Confirms the Suggestion on a Recent Invasion of Hobo in;148
8.1.3.4;7.3.4The New Hobo Sequences Are Evenly Distributed in the Genome, Whereas the Old Hobo Sequences Tend for Pericentromeri;149
8.1.4;References;152
9;184822_1_En_8_Chapter_OnlinePDF;154
9.1;Chapter Chapter 8: Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversificati;154
9.1.1;8.1Introduction;155
9.1.2;8.2Histone Genes Display Highly Heterogeneous Organization Patterns Across Eukaryotic Genomes;156
9.1.2.1;8.2.1Prokaryotic Chromatin and the Origin of Histones;156
9.1.2.2;8.2.2The Transition Toward the Eukaryotic Cell and the Appearance of Pluricellularity in Light of Histone Diversificatio;158
9.1.3;8.3Histone Variants Impart Specific Functions to Nucleosomes;160
9.1.3.1;8.3.1Linker Histones;160
9.1.3.2;8.3.2Core Histones;161
9.1.4;8.4Eukaryotic Histones Arose from Archaeal Histones Following a Recurrent Gene Duplication Process;163
9.1.5;8.5The Long-Term Evolution of Histone Genes Is Guidedby a Birth-and-Death Process That PromotesGenetic Diversity;165
9.1.6;8.6Replication-Dependent Histone Variants Are Derived from a Common Replication- Independent Ancestor;168
9.1.7;8.7Conclusions;171
9.1.8;References;172
10;184822_1_En_9_Chapter_OnlinePDF;178
10.1;Chapter Chapter 9: Masculinization Events and Doubly Uniparental Inheritance of Mitochondrial DNA: A Model for Understanding th;178
10.1.1;9.1Doubly Uniparental Inheritance of Mitochondrial DNA in Bivalves - An Overview;179
10.1.2;9.2Details of DUI and Variations on the Basic Model;179
10.1.3;9.3Phylogenetic Patterns;180
10.1.4;9.4Functional Studies of M Type Polymorphisms in Mytilus;182
10.1.5;9.5A (Primarily) Deterministic Model for Periodic Replacement of SM Types by RM Types;184
10.1.6;9.6Future Research Opportunities;186
10.1.7;References;186
11;184822_1_En_10_Chapter_OnlinePDF;189
11.1;Chapter Chapter 10: Missing the Subcellular Target: A Mechanism of Eukaryotic Gene Evolution;189
11.1.1;10.1Introduction;189
11.1.2;10.2Protein Subcellular Relocations (PSR): A Mechanism for the Evolution of New Genes and Gene Functions;191
11.1.2.1;10.2.1Protein Subcellular Localization through the N-Terminal Peptide;191
11.1.2.2;10.2.2PSR is Widespread in Gene Families;193
11.1.2.3;10.2.3Changes in Subcellular Location Can Alter Protein Function;194
11.1.3;10.3Conclusion;195
11.1.4;References;196
12;184822_1_En_11_Chapter_OnlinePDF;198
12.1;Chapter Chapter 11: The Evolution of Functional Gene Clusters in Eukaryote Genomes;198
12.1.1;11.1Physically and Functionally Linked Gene Clusters;198
12.1.1.1;11.1.1Operons: Typical Gene Clusters in Prokaryote Genomes;198
12.1.1.2;11.1.2Gene Clusters in Eukaryote Genomes;199
12.1.2;11.2Leaky Gene Expression;200
12.1.3;11.3Tandemly Duplicated Genes;201
12.1.4;11.4Interacting Gene Clusters;201
12.1.5;11.5Evolution of Functional Gene Clusters;203
12.1.5.1;11.5.1Evolution of Bidirectional Promoters in Eukaryote Genomes;203
12.1.5.2;11.5.2Evolution of Co-expressed Gene Clusters;203
12.1.5.3;11.5.3Evolution of Interacting Gene Clusters;204
12.1.6;11.6Concluding Remarks;204
12.1.7;References;205
13;184822_1_En_12_Chapter_OnlinePDF;208
13.1;Chapter Chapter 12: Knowledge Standardization in Evolutionary Biology: The Comparative Data Analysis Ontology;208
13.1.1;12.1Introduction;209
13.1.1.1;12.1.1Knowledge Representation as a Positive Heuristic in Biomedicine;209
13.1.1.2;12.1.2Ontologies in the Petabyte Era of Biological Research;210
13.1.1.3;12.1.3The Central Role of Evolutionary Biology;212
13.1.1.4;12.1.4Current Biomedical Ontologies;213
13.1.2;12.2The Comparative Data Analysis Ontology;214
13.1.2.1;12.2.1History of CDAO Development;214
13.1.2.2;12.2.2CDAO: Some Evaluation Considerations;214
13.1.2.3;12.2.3CDAO Version 2.0;216
13.1.3;12.3Conceptual Revolutions in Evolutionary Biology and Historical Analysis of CDAO Concepts;217
13.1.3.1;12.3.1Conceptual Reformulations in Evolutionary Biology Since Darwin;217
13.1.3.2;12.3.2History of CDAO Concepts: The Taxonomic Unit;218
13.1.3.2.1;12.3.2.1TU@CDAO;219
13.1.3.3;12.3.3History of CDAO Concepts: The Character and the Character-State Data Matrix;219
13.1.3.3.1;12.3.3.1Character@CDAO;220
13.1.3.4;12.3.4History of CDAO Concepts: The Tree;221
13.1.3.4.1;12.3.4.1Tree@CDAO;222
13.1.4;12.4Conclusions;223
13.1.5;12.5Future Developments;224
13.1.6;References;225
14;184822_1_En_13_Chapter_OnlinePDF;228
14.1;Chapter Chapter 13: Large-Scale Analyses of Positive Selection Using Codon Models;229
14.1.1;13.1Introduction;229
14.1.1.1;13.1.1Positive Selection as a Mechanism of Adaptation;229
14.1.1.2;13.1.2Functional Categories of Genes;230
14.1.1.3;13.1.3The Case of Duplicated Genes;230
14.1.2;13.2Which Codon Model for Which Problem?;231
14.1.2.1;13.2.1Pairwise Estimate of dN/dS;232
14.1.2.2;13.2.2Branch Models;232
14.1.2.3;13.2.3Site Models;233
14.1.2.4;13.2.4Branch-Site Models;233
14.1.3;13.3Issues in Deep and Large-Scale Analysis;235
14.1.3.1;13.3.1Sampling;235
14.1.3.2;13.3.2Alignment Quality;235
14.1.3.3;13.3.3Saturation of dS;235
14.1.3.4;13.3.4False Discovery Rate;237
14.1.4;13.4Large-Scale Studies;237
14.1.4.1;13.4.1General Scans for Positive Selection;237
14.1.4.2;13.4.2From Human-Chimpanzee Comparisons to a Study of Vertebrates;238
14.1.4.3;13.4.3What is the Effect of Genome Duplication on the Incidence of Positive Selection?;240
14.1.5;13.5Selectome, A Database of Branch-Site Positive Selection;243
14.1.6;13.6Conclusion;244
14.1.7;References;245
15;184822_1_En_14_Chapter_OnlinePDF;248
15.1;Chapter Chapter 14: Molecular Coevolution and the Three-Dimensionality of Natural Selection;248
15.1.1;14.1Natural Selection and the Neutral Theory of Molecular Evolution;249
15.1.2;14.2Measuring the Intensity of Selection;250
15.1.2.1;14.2.1Heterogeneous Selective Constraints Throughout Time and Sequence Space;251
15.1.3;14.3Structural Constraints and Molecular Coevolution;253
15.1.3.1;14.3.1Methods to Measure Correlated Variation in Proteins;254
15.1.3.2;14.3.2Molecular Adaptive Coevolution and Epistasis;257
15.1.4;References;259
16;184822_1_En_15_Chapter_OnlinePDF;263
16.1;Chapter Chapter 15: The Evolutionary Constraints in Mutational Replacements;263
16.1.1;15.1Introduction;263
16.1.2;15.2Methods;265
16.1.3;15.3Results;267
16.1.3.1;15.3.1Dinucleotide Replacements;267
16.1.3.2;15.3.2Trinucleotide Replacements;272
16.1.3.3;15.3.3Codon-Codon Replacements;273
16.1.4;15.4Discussion;275
16.1.5;References;276
17;184822_1_En_16_Chapter_OnlinePDF;278
17.1;Chapter Chapter 16: Why Phylogenetic Trees are Often Quite Robust Against Lateral Transfers;278
17.1.1;16.1Introduction;278
17.1.2;16.2Effect of Lateral Transfer on the Order of the Branches in a Tree;279
17.1.3;16.3Effect of Lateral Transfer on the Reconstructed Tree with the Neighbor-Joining Algorithm (NJ);282
17.1.4;16.4Representing Phylogenetic Information in Case of Lateral Transfers;283
17.1.5;16.5How to Detect Lateral Transfers;286
17.1.6;16.6Examples with Real Data;288
17.1.6.1;16.6.1Whole Genome Phylogenies;288
17.1.6.2;16.6.2Deep Branches in SSU rRNA Phylogenies of Archaea;290
17.1.7;16.7Conclusions;290
17.1.8;References;291
18;184822_1_En_17_Chapter_OnlinePDF;293
18.1;Chapter Chapter 17: The Genome Sequence of Meloidogyne incognita Unveils Mechanisms of Adaptation to Plant-Parasitism in Metazo;294
18.1.1;17.1Introduction;294
18.1.2;17.2M. incognita Genome Organization and Comparison to Other Nematode Genomes;297
18.1.3;17.3The Gene Content of Plant-Parasitic Nematodes;298
18.1.4;17.4Genes Potentially Involved in Plant-Parasitism;299
18.1.5;17.5Other Singularities Potentially Reflecting Adaptation to a Plant-Parasitic Lifestyle;302
18.1.6;17.6Is the C. elegans Genome Representative of Nematode Diversity?;303
18.1.7;17.7RNAi and Development of New Antiparasitic Drug Targets;305
18.1.8;17.8Conclusion;305
18.1.9;References;307
19;184822_1_En_18_Chapter_OnlinePDF;310
19.1;Chapter Chapter 18: Ecological Genomics of Nematode Community Interactions: Model and Non-model Approaches;310
19.1.1;18.1Introduction;311
19.1.1.1;18.1.1Global Environmental Change;311
19.1.1.2;18.1.2The Ecological Genomic Approach;311
19.1.2;18.2Evolutionary Framework for Ecological Genomic Studies;312
19.1.3;18.3Nematode Ecological Genomics: Model and Non-model Approaches;313
19.1.3.1;18.3.1Global Environmental Change and the Grassland Ecosystemgrassland ecosystem;313
19.1.3.2;18.3.2The Importance of Nematode Ecologynematode ecology;313
19.1.3.3;18.3.3The Nematode Ecological Genomic Approach;314
19.1.3.4;18.3.4C. elegans as a Model Nematode;314
19.1.3.5;18.3.5Non-model Approaches;315
19.1.3.5.1;18.3.5.1Grassland Nematode Community Responses;315
19.1.3.5.2;18.3.5.2Differential Nematode Response;315
19.1.3.5.3;18.3.5.3Microbial CommunityMicrobial community Response to NitrogenAddition and Burning;317
19.1.3.6;18.3.6Model Approaches;318
19.1.3.6.1;18.3.6.1Use of C. elegans to Model Ecological Interactions;318
19.1.3.6.2;18.3.6.2C. elegansC. elegans Genes Involved in Response to Changes in Bacterial Environment;318
19.1.3.6.3;18.3.6.3Specificity of the C. elegans Functional Response;320
19.1.3.6.4;18.3.6.4Do Nematodes ``Know´´ What Is Good for Them?;323
19.1.4;18.4Conclusions;323
19.1.5;References;326
20;184822_1_En_19_Chapter_OnlinePDF;329
20.1;Chapter Chapter 19: Comparative Evolutionary Histories of Fungal Chitinases;329
20.1.1;19.1Introduction;329
20.1.2;19.2The Fungal Chitinase Gene Family;331
20.1.2.1;19.2.1Phylogeny and Nomenclature of Fungal Chitinases;331
20.1.2.2;19.2.2Structure of Fungal Chitinases;333
20.1.2.3;19.2.3Functions of Fungal Chitinases;333
20.1.3;19.3Chitinase Gene Family Evolution;334
20.1.3.1;19.3.1Analysis of Gene Gain and Loss;334
20.1.3.2;19.3.2Expansions and Contractions of Chitinases;336
20.1.4;19.4Correlations Between Gene Family Evolution and Fungal Lifestyles;338
20.1.4.1;19.4.1Chitinase Expansions in Filamentous Ascomycetes;338
20.1.4.2;19.4.2Methodological Assumptions with Implications for Data Interpretation;340
20.1.5;19.5Conclusions;340
20.1.6;References;341
21;184822_1_En_20_Chapter_OnlinePDF;344
21.1;Chapter Chapter 20: Aging: Evolutionary Theory Meets Genomic Approaches;344
21.1.1;20.1Introduction;344
21.1.2;20.2The Evolution of Aging: Why Not Immortality?;346
21.1.3;20.3Measuring and Interpreting Life Span Phenotypes;347
21.1.4;20.4Conservation of Longevity Control;349
21.1.4.1;20.4.1IIS Promotes Aging;350
21.1.4.2;20.4.2Sirtuins: Playing Both Sides?;351
21.1.4.3;20.4.3Reduced TOR Signaling Provides Consistent Life Span Extension;352
21.1.4.4;20.4.4DR and the Search for a Mechanism;352
21.1.5;20.5Aging Genomics;353
21.1.5.1;20.5.1Microarrays Uncover Age-Associated Gene Expression Patterns;354
21.1.5.2;20.5.2Genome-Scale Life Span Screens Identify a Large Number of Longevity Genes;355
21.1.6;20.6The Search for Conserved Longevity Determinants: The Genome-Wide Multi-organism Approach;356
21.1.7;20.7Uncovering the Mechanisms Behind Conserved Longevity Factors: A Central Role for Translation?;357
21.1.8;20.8Conclusion;358
21.1.9;References;359
22;184822_1_En_21_Chapter_OnlinePDF;366
22.1;Chapter Chapter 21: Galaxies and Cladistics;367
22.1.1;21.1Introduction;367
22.1.2;21.2The astrocladisticsAstrocladistics Project;370
22.1.2.1;21.2.1Aphylogenetic Phylogenetic Framework for the Galaxies;370
22.1.2.2;21.2.2Transmission with Modification Among Galaxies;372
22.1.3;21.3Applying Cladistics to Galaxies;374
22.1.4;21.4The First Extragalactic Trees;375
22.1.5;21.5Some Open Questions;379
22.1.6;21.6Conclusion;380
22.1.7;References;381
23;184822_1_En_22_Chapter_OnlinePDF;383
23.1;Chapter Chapter 22: Economics Pursuing the Mold of Evolutionary Biology: ``Accident´´ and ``Necessity´´ in the Quest to make E;383
23.1.1;22.1Introduction;383
23.1.2;22.2The ``Nomothetic Paradox´´ in Economics;384
23.1.3;22.3Possible Model in Biology;386
23.1.4;22.4The Parallel Provided by ``Accident´´ and ``Necessity´´;389
23.1.5;22.5Arthur and Monod;391
23.1.6;22.6The Flaw in the Analogy;393
23.1.7;References;395
24;184822_1_En_BM2_OnlinePDF;397
24.1;: Index;397



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.