Platz / Ouellette / Flynn | Model Validation and Uncertainty Quantification, Vol. 3 | Buch | 978-3-031-68892-8 | sack.de

Buch, Englisch, 146 Seiten, Format (B × H): 215 mm x 285 mm, Gewicht: 651 g

Reihe: Conference Proceedings of the Society for Experimental Mechanics Series

Platz / Ouellette / Flynn

Model Validation and Uncertainty Quantification, Vol. 3

Proceedings of the 42nd IMAC, A Conference and Exposition on Structural Dynamics 2024
2025
ISBN: 978-3-031-68892-8
Verlag: Springer International Publishing

Proceedings of the 42nd IMAC, A Conference and Exposition on Structural Dynamics 2024

Buch, Englisch, 146 Seiten, Format (B × H): 215 mm x 285 mm, Gewicht: 651 g

Reihe: Conference Proceedings of the Society for Experimental Mechanics Series

ISBN: 978-3-031-68892-8
Verlag: Springer International Publishing


the third volume of ten from the Conference brings together contributions to this important area of research and engineering.  The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on:

  • Uncertainty Quantification in Dynamics
  • Fusion of Test and Analysis
  • Model Form Uncertainty: Round Robin Challenge UQVI (Uncertainty Quantification in Vibration Isolation)
  • Recursive Bayesian System Identification
  • Virtual Sensing & Realtime Monitoring
  • Surrogate Modeling and Reduced Order Models
Platz / Ouellette / Flynn Model Validation and Uncertainty Quantification, Vol. 3 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Time-Normalized Unitless Metrics for Quantifying the Value of an SHM System Throughout the Structure's Lifecycle.- 2. A Structured Knowledge Graph for a Geometric and Behavioral Digital Twin in the Context of Modal Testing.- 3. Propagation of Systematic Sensor Errors into the Frequency Domain - A Matlab Software Framework.- 4. Tutorial and Application of Bayesian Statistics on Assessing Model Form Uncertainty in Vibration Isolation.- 5. Physics-informed Information Field Theory Approach to Dynamical System Parameter and State Estimation in Path Space.- 6. Efficient Frequency-based Modelling of Rotating Tire Dynamics for NVH Applications.- 7. Population-based Mode Shape Identification of Structures via Graph Neural Networks.- 8. Stochastic Model Correction for the Adaptive Vibration Isolation Round-Robin Challenge.- 9. Spectral Model Fusion for Input Identification.- 10. Multiscale Corrosion Damage Diagnostics and Prognostics for a Miter Gate.- 11. Analyzing the Influential Factors on ICaF Performance in Bayesian Model Calibration and Forecasting.- 12. Identification of Railway Bridge Modal Properties via Acceleration Data from Traversing Trains.- 13. Propagation of Geometric Uncertainties Through the Analytic Derivative of the System Matrices.- 14. Physics-Informed Model Order Reduction via Generalized Characteristic Value Decomposition.- 15. Tribo-Dynamics Digital Twins (TDDT): Prediction of Friction and Frequency Response Function (FRF) in a Dry Sliding Tribological Contact.- 16. Dynamic State Estimation via Likelihood-Free Bayesian Inference Based on Conditional Invertible Neural Networks.- 17. Bayesian Decision-theoretic Model Selection for Monitored Systems.- 18. An Elephant in the Room: Forecasting Using Validated Physics-based Simulations.- 19. Linearization and Nonlinear Model Reduction for the Model Predictive Control of Nonlinear Structure Vibrations.- 20. Uncertainty Quantification for Deep Learning-Based Automatic Crack Detection in the Underwater Environment.- 21. Model Class and Parameter Selection for Bayesian Filtering with Application to a Modular Active Spring-Damper System: Round-Robin Challenge.- 22. Implementation of Bayesian Model Updating in Five-Story Building using Different Observations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.