Pinto / Garvey | Advanced Risk Analysis in Engineering Enterprise Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 464 Seiten

Reihe: Statistics: A Series of Textbooks and Monographs

Pinto / Garvey Advanced Risk Analysis in Engineering Enterprise Systems


1. Auflage 2013
ISBN: 978-1-4398-2615-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 464 Seiten

Reihe: Statistics: A Series of Textbooks and Monographs

ISBN: 978-1-4398-2615-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Since the emerging discipline of engineering enterprise systems extends traditional systems engineering to develop webs of systems and systems-of-systems, the engineering management and management science communities need new approaches for analyzing and managing risk in engineering enterprise systems. Advanced Risk Analysis in Engineering Enterprise Systems presents innovative methods to address these needs.

With a focus on engineering management, the book explains how to represent, model, and measure risk in large-scale, complex systems that are engineered to function in enterprise-wide environments. Along with an analytical framework and computational model, the authors introduce new protocols: the risk co-relationship (RCR) index and the functional dependency network analysis (FDNA) approach. These protocols capture dependency risks and risk co-relationships that may exist in an enterprise.

Moving on to extreme and rare event risks, the text discusses how uncertainties in system behavior are intensified in highly networked, globally connected environments. It also describes how the risk of extreme latencies in delivering time-critical data, applications, or services can have catastrophic consequences and explains how to avoid these events.

With more and more communication, transportation, and financial systems connected across domains and interfaced with an infinite number of users, information repositories, applications, and services, there has never been a greater need for analyzing risk in engineering enterprise systems. This book gives you advanced methods for tackling risk problems at the enterprise level.

Pinto / Garvey Advanced Risk Analysis in Engineering Enterprise Systems jetzt bestellen!

Zielgruppe


Applied statistics professionals and consultants in engineering; industrial engineers and system engineers.

Weitere Infos & Material


Engineering Risk Management
Introduction
Objectives and Practices
New Challenges
Perspectives on Theories of Systems and Risk
Introduction
General Systems Theory
Risk and Decision Theory
Engineering Risk Management
Foundations of Risk and Decision Theory
Introduction
Elements of Probability Theory
The Value Function
Risk and Utility Functions
Multiattribute Utility—The Power Additive Utility Function
Applications to Engineering Risk Management
A Concluding Thought
A Risk Analysis Framework in Engineering Enterprise Systems
Introduction
Perspectives on Engineering Enterprise Systems
A Framework for Measuring Enterprise Capability Risk
A Risk Analysis Algebra
Information Needs for Portfolio Risk Analysis
The "Cutting Edge"
An Index to Measure Risk Co-Relationships
Introduction
RCR Postulates, Definitions, and Theory
Computing the RCR Index
Applying the RCR Index: A Resource Allocation Example
Summary
Functional Dependency Network Analysis
Introduction
FDNA Fundamentals
Weakest Link Formulations
FDNA (a, ß) Weakest Link Rule
Network Operability and Tolerance Analyses
Special Topics
Summary
A Decision-Theoretic Algorithm for Ranking Risk Criticality
Introduction
A Prioritization Algorithm
A Model for Measuring Risk in Engineering Enterprise Systems
A Unifying Risk Analytic Framework and Process
Summary
Random Processes and Queuing Theory
Introduction
Deterministic Process
Random Process
Markov Process
Queuing Theory
Basic Queuing Models
Applications to Engineering Systems
Summary
Extreme Event Theory
Introduction to Extreme and Rare Events
Extreme and Rare Events and Engineering Systems
Traditional Data Analysis
Extreme Value Analysis
Extreme Event Probability Distributions
Limit Distributions
Determining Domain of Attraction Using Inverse Function
Determining Domain of Attraction Using Graphical Method
Complex Systems and Extreme and Rare Events
Summary
Prioritization Systems in Highly Networked Environments
Introduction
Priority Systems
Types of Priority Systems
Summary
Risks of Extreme Events in Complex Queuing Systems
Introduction
Risk of Extreme Latency
Conditions for Unbounded Latency
Conditions for Bounded Latency
Derived Performance Measures
Optimization of PS
Summary
Appendix: Bernoulli Utility and the St. Petersburg Paradox
References
Index
Questions and Exercises appear at the end of each chapter.


C. Ariel Pinto is an Associate Professor in the Department of Engineering Management and Systems Engineering at Old Dominion University, where he co-founded the Emergent Risk Initiative. He earned a Ph.D. in systems engineering from the University of Virginia. Dr. Pinto’s research interests encompass the areas of risk management in engineered systems, including project risk management, risk valuation, risk communication, analysis of extreme-and-rare events, and decision making under uncertainty.
Paul R. Garvey is Chief Scientist and a Director for the Center for Acquisition and Systems Analysis, a division of The MITRE Corporation. He earned an A.B. and M.Sc. in pure and applied mathematics from Boston College and Northeastern University, respectively, and a Ph.D. in engineering management from Old Dominion University, where he was awarded the doctoral dissertation medal from the faculty of the College of Engineering. He is the author of the CRC Press books Analytical Methods for Risk Management and Probability Methods for Cost Uncertainty Analysis. Dr. Garvey’s research interests include the theory and application of risk-decision analytic methods to operations research problems in the system sciences domains.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.