Pinsky | Problems from the Discrete to the Continuous | Buch | 978-3-319-07964-6 | sack.de

Buch, Englisch, 154 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 2642 g

Reihe: Universitext

Pinsky

Problems from the Discrete to the Continuous

Probability, Number Theory, Graph Theory, and Combinatorics

Buch, Englisch, 154 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 2642 g

Reihe: Universitext

ISBN: 978-3-319-07964-6
Verlag: Springer International Publishing


The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a melange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct, as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures.
Pinsky Problems from the Discrete to the Continuous jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Partitions With Restricted Summands or "The Money Changing Problem".- The Asymptotic Density of Relatively Prime Pairs and of Square-Free Numbers.- A One-Dimensional Probabilistic Packing Problem.- The Arcsine Laws for the One-Dimensional Simple Symmetric Random Walk.- The Distribution of Cycles in Random Permutations.- Chebyshev's Theorem on the Asymptotic Density of the Primes.- Mertens' Theorems on the Asymptotic Behavior of the Primes.- The Hardy-Ramanujan Theorem on the Number of Distinct Prime Divisors.- The Largest Clique in a Random Graph and Applications to Tampering Detection and Ramsey Theory.- The Phase Transition Concerning the Giant Component in a Sparse Random Graph–a Theorem of Erdos and Rényi.


Ross Pinsky is a Professor in the Department of Mathematics at Technion-Israel Institute of Technology.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.