Phillips / Sneddon / Stark | Some Topics in Complex Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 86, 150 Seiten, Web PDF

Reihe: International Series in Pure and Applied Mathematics

Phillips / Sneddon / Stark Some Topics in Complex Analysis


1. Auflage 2014
ISBN: 978-1-4832-8272-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band Volume 86, 150 Seiten, Web PDF

Reihe: International Series in Pure and Applied Mathematics

ISBN: 978-1-4832-8272-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



International Series of Monographs in Pure and Applied Mathematics, Volume 86, Some Topics in Complex Analysis deals with a variety of topics related to complex analysis. This book discusses the method of comparison, periods of an integral, generalized Joukowski transformations, and Koebe's distortion theorems. The deductions from the maximum-modulus principle, canonical products and genus of an I.F., and Weierstrass's primary factors are also reviewed. This text likewise considers Mittag-Leffler's theorem, summation of series by the calculus of residues, definition of regular functions by integrals, and Riemann zeta function. This publication is a good reference for students and specialists researching in the field of applied and pure mathematics.

Phillips / Sneddon / Stark Some Topics in Complex Analysis jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Some Topics in Complex Analysis;4
3;Copyright Page;5
4;Table of Contents;6
5;PREFACE;8
6;CHAPTER 1. ELLIPTIC FUNCTIONS;10
6.1;1.1 Definition;10
6.2;1.2 Fundamental Theorems;11
6.3;1.3. The Functions p(u), s(u) and .(w);14
6.4;1.4 The Method of Comparison;16
6.5;1.5 The Double Periodicity of p(u);16
6.6;1.6 Descriptive Properties of p(u), s(u) and .(u);17
6.7;1.7 The Addition Theorem for p(u);17
6.8;1.8 The Relation Between p(u) and p'(u);18
6.9;1.9 Another Form of the Addition Theorem;21
6.10;1.10 Fundamental Expressions of E.F.;21
6.11;1.11 Some Fundamental Formulae;23
6.12;1.12 Example;25
6.13;Examples 1;26
7;CHAPTER 2. THE JACOBIAN ELLIPTIC FUNCTIONS;29
7.1;2.1 The Periods of an Integral;29
7.2;2.2 The Function sn u;30
7.3;2.3 The Constants K and K;32
7.4;2.4 The Functions cn u, dn u;33
7.5;2.5 The Addition Theorems;34
7.6;2.6 Periodicity;35
7.7;2.7 Expansions in Powers of u;36
7.8;2.8 Identities and Duplication Formulae;36
7.9;2.9 Jacobi's "Imaginary" Transformation;38
7.10;2.10 The Jacobian Functions for Values Connected with the Periods;39
7.11;2.11 Applications of the Method of Comparison to Jacobian Functions;42
7.12;2.12 The Relation Between Weierstrassian and Jacobian E.F.;43
7.13;2.13 Elliptic Integrals;44
7.14;2.14 The Functions E(u) and Z(u);46
7.15;Examples 2;48
8;CHAPTER 3. CONFORMAL TRANSFORMATION;52
8.1;3.1 Ratio of Two Quadratics;52
8.2;3.2 Generalized Joukowski Transformations;54
8.3;3.3 Boundary a Closed Polygon;57
8.4;3.4 Schwarz–Christoffel Transformation;60
8.5;3.5 Transformations Involving Elliptic Functions;62
8.6;3.6 Note on Transformations Involving E.F.;67
8.7;3.7 Schwarz's Lemma;68
8.8;3.8 Extension of Schwarz's Lemma;69
8.9;3.9 An Estimate of the Derivative of a Bounded Function;70
8.10;3.10 Functions with a Positive Real Part;71
8.11;3.11 Schwarz's Symmetry Principle;72
8.12;3.12;73
8.13;Examples 3;74
9;CHAPTER 4. SCHLICHT FUNCTIONS;77
9.1;4.1;77
9.2;4.2 Definition;78
9.3;4.3 Some Distortion Theorems;81
9.4;4.4;84
9.5;4.5 Koebe's Distortion Theorems;86
9.6;4.6 Bieberbach's Inequality;88
9.7;Examples 4;88
10;CHAPTER 5. THE MAXIMUM-MODULUS PRINCIPLE;91
10.1;5.1 The Maximum-Modulus Theorem;91
10.2;5.2 The Phragmén–Lindelöf Extension;92
10.3;5.3 Deductions from the Maximum-Modulus Principle;92
10.4;5.4;94
10.5;5.5;95
10.6;5.6;96
10.7;Examples 5;97
11;CHAPTER 6. INTEGRAL FUNCTIONS;99
11.1;6.1 Definition and Preliminaries;99
11.2;6.2 Weierstrass's Primary Factors;100
11.3;6.3 The Order of an I.F.;102
11.4;6.4 Jensen's Theorem;103
11.5;6.5 The Function n(r) for an I.F.;105
11.6;6.6 Canonical Products and Genus of an I.F.;107
11.7;6.7 Hadamard's Theorem on I.F. of Finite Order;108
11.8;6.8 The Coefficients in the Expansion of an I.F. of Finite Order;109
11.9;Examples 6;111
12;CHAPTER 7. EXPANSIONS IN INFINITE SERIES;114
12.1;7.1 Lagrange's Expansion;114
12.2;7.2 Teixeira's Theorem;116
12.3;7.3 Mittag–Leffler's Theorem;118
12.4;7.4 Weierstrass's Theorem;119
12.5;7.5 Summation of Series by the Calculus of Residues;120
12.6;7.6 On Some Meromorphic Functions;122
12.7;7.7 Some Further Summations;125
12.8;Examples 7;126
13;CHAPTER 8. CONTOUR INTEGRALS DEFINING SOME SPECIAL FUNCTIONS;129
13.1;8.1 Definition of Regular Functions by Integrals;129
13.2;8.2 Analytic Continuation by Means of an Integral;130
13.3;8.3 The Gamma Function;131
13.4;8.4 The Riemann Zeta function;133
13.5;8.5 A Contour Integral for .(s, a);135
13.6;8.6 The Legendre Function Pn(z);136
13.7;8.7 The Bessel Function Jn(z) when n is an Integer;137
13.8;8.8 Bessel's Integral when n is not an Integer;138
13.9;8.9 Hankel's Contour Integral for Jn(z);140
13.10;Examples 8;142
14;BIBLIOGRAPHY;144
15;INDEX;146
16;OTHER TITLES IN THE SERIES IN PURE AND APPLIED MATHEMATICS;149



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.