Phillips | Mathematical Foundations for Data Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, 287 Seiten, eBook

Reihe: Springer Series in the Data Sciences

Phillips Mathematical Foundations for Data Analysis


Erscheinungsjahr 2021
ISBN: 978-3-030-62341-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 287 Seiten, eBook

Reihe: Springer Series in the Data Sciences

ISBN: 978-3-030-62341-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra.  Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Phillips Mathematical Foundations for Data Analysis jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Probability review.- Convergence and sampling.- Linear algebra review.- Distances and nearest neighbors.- Linear Regression.- Gradient descent.- Dimensionality reduction.- Clustering.-  Classification.- Graph structured data.- Big data and sketching.


Jeff M. Phillips is an Associate Professor in the School of Computing within the University of Utah.  He directs the Utah Center for Data Science as well as the Data Science curriculum within the School of Computing.  His research is on algorithms for big data analytics, a domain with spans machine learning, computational geometry, data mining, algorithms, and databases, and his work regularly appears in top venues in each of these fields.  He focuses on a geometric interpretation of problems, striving for simple, geometric, and intuitive techniques with provable guarantees and solve important challenges in data science.  His research is supported by numerous NSF awards including an NSF Career Award.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.