Buch, Englisch, 107 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 201 g
Reihe: Springer Theses
Buch, Englisch, 107 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 201 g
Reihe: Springer Theses
ISBN: 978-3-030-07518-7
Verlag: Springer International Publishing
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
Weitere Infos & Material
Introduction .- Background .- Algorithms .- Point Anomaly Detection: Application to Freezing of Gait Monitoring .- Collective Anomaly Detection: Application to Respiratory Artefact Removals.- Spike Sorting: Application to Motor Unit Action Potential Discrimination .- Conclusion .