E-Book, Englisch, 580 Seiten, eBook
Graßmann Bicentennial Conference, September 2009
E-Book, Englisch, 580 Seiten, eBook
ISBN: 978-3-0346-0405-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Preface;12
3;Abbreviations for works of Hermann Grassmann;18
4;On the lives of the Grassmann brothers;22
4.1;Description of the life of Hermann Grassmann by his son Justus Grassmann, probably written shortly after the death of his father, 1877;24
4.2;Life history of Robert Grassmann, written by himself (1890);29
5;Historical contexts of Hermann Grassmann's creativity;36
5.1;Discovering Robert Grassmann (1815–1901);37
5.1.1;An overlooked prolific polymath;37
5.1.2;Plan of the paper;38
5.1.3;Books by the score;38
5.1.4;Before GW: Robert's Wissenschaftslehre;40
5.1.5;The first planned version of GW;43
5.1.6;The house that Robert Grassmann built: the structure and chronology of GW;43
5.1.7;Some characteristics of GW;47
5.1.8;Robert Grassmann on the calculus and logic;49
5.1.9;Four final queries;51
5.1.10;Acknowledgements
;53
5.2;Hermann Grassmann's theory of religion and faith;54
5.2.1;I;54
5.2.2;II;55
5.2.2.1;Why have people stopped believing in miracles?;56
5.2.2.2;Where does the knowledge of mankind come from?;57
5.2.2.3;Where do we find absolute knowledge?;58
5.2.2.4;Is the Bible the absolute word?;59
5.2.2.5;Who interprets scripture?;61
5.2.3;III;62
5.3;The Significance of Naturphilosophie for Justus and Hermann Grassmann;65
5.3.1;The philosophy of Christian Samuel Weiss;67
5.3.2;Emergence of matter;68
5.3.3;Concept of extension;70
5.3.4;The question of influence;74
5.4;Justus and Hermann Grassmann: philosophy and mathematics;76
5.5;Institutional development of science in Stettin in the first half of the nineteenth century in the time of Hermann Grassmann;86
5.5.1;Pomerania at the turn of the nineteenth century;86
5.5.2;The time of the Bourgeois reformers;88
5.5.3;Johann August Sack: governor and reformer in Pomerania;89
5.5.4;Stettin and its Marienstift Gymnasium;90
5.5.5;The Pommersche Provinzial: Blätter für Stadt und Land 1820–1825;91
5.5.6;The founding of the ``Society for Pomeranian History and Classical Studies'';94
5.5.7;The establishment of the Stettin Provincial Archives;95
5.5.8;The flowering of scientific life in Stettin;96
6;Philosophical and methodological aspects of the work of the Grassmann brothers;99
6.1;Brief outline of a history of the genetic method in the development of the deductive sciences;100
6.1.1;I;100
6.1.2;II;101
6.1.3;III;102
6.1.4;IV;102
6.1.5;V;103
6.1.6;VI;103
6.1.7;VII;103
6.2;Grassmann's epistemology: multiplication and constructivism;104
6.2.1;Introduction;104
6.2.2;The product between extensive magnitudes;105
6.2.2.1;Extensive magnitudes;106
6.2.2.2;The product between extensive magnitudes;107
6.2.3;A comparative philosophical analysis;108
6.2.3.1;The product between vectors and multivectors;109
6.2.3.2;Domain and homogeneity;110
6.2.4;Conclusion;111
6.3;Axiomatics and self-reference Reflections about Hermann Grassmann's contribution to axiomatics;114
6.3.1;The (never ending?) debate;114
6.3.2;The place of axiomatics in the Lehrbuch der Arithmetik (1861): the positions of Gottlob Frege, Judson Webb, and Hao Wang;116
6.3.3;Hans-Joachim Petsche's interpretation;120
6.3.4;An alternative interpretation: axiomatics and self-reference;122
6.3.5;Instead of a conclusion;128
6.4;Concepts and contrasts: Hermann Grassmann and Bernard Bolzano;130
6.4.1;Introduction;130
6.4.2;Some parallels of context;131
6.4.3;Some divergences of working;133
6.4.3.1;The nature and classification of mathematics;134
6.4.3.2;What shall we do with geometry?;136
6.4.3.3;What makes a Presentation ``Scientific''?;137
6.4.4;Conclusion;139
7;Diversity of the influence of the Grassmann brothers;141
7.1;New forms of science and new sciences of form: On the non-mathematical reception of Grassmann's work;142
7.1.1;Grassmann outside mathematics;142
7.1.2;Grassmann in psychology and physiology;143
7.1.3;Basic structures and operations: relations, order and abstraction;146
7.1.4;New forms of science;148
7.2;Some philosophical influences of the Ausdehnungslehre;151
7.2.1;Grassmann as philosopher;151
7.2.2;Bertrand Russell;152
7.2.3;Ernst Cassirer;154
7.2.4;Paul Carus;155
7.2.5;Friedrich Kuntze;157
7.2.6;Concluding note;158
7.3;Grassmann's influence on Husserl;159
7.3.1;``Influence'';159
7.3.2;The Grassmanns and Husserl;160
7.3.3;The Weierstrassian first part of the Philosophy of Arithmetic;161
7.3.4;The parallel structures of symbols and concepts;163
7.3.5;The problem and the influence of Grassmann;164
7.3.6;Conclusion;169
7.4;Ernst Abbe's reception of Grassmann in the light of Grassmann's reception of Schleiermacher;170
7.4.1;The reception of Grassmann in Göttingen and Jena;170
7.4.2;Mathematics, philosophy and experimentation: Abbe's scientific interests;171
7.4.3;Abbe's first encounter with Grassmann's Extension Theory of 1844;172
7.4.4;Alexander Crailsheim: Grassmann's contemporary and Abbe's inspiration;174
7.4.5;Hegel, Schleiermacher and Robert Grassmann's opinion;176
7.4.6;Schleiermacher's influence on the work of Hermann Grassmann;177
7.4.7;Heuristics and architectonics in the work of Schleiermacher and the Grassmanns;181
7.4.8;Appendix;183
7.4.8.1;Acknowledgment;183
7.5;On the early appraisals in Russia of H. and R. Grassmann's achievements;184
7.6;Hermann Grassmann's Work and the Peano School;193
7.6.1;Introduction;193
7.6.2;Peano's geometric calculus;195
7.6.3;Toward the minimum system;201
7.6.4;Conclusion;203
7.7;Did Gibbs influence Peano's ``Calcolo geometrico secondo l'Ausdehnungslehre di H. Grassmann ''?;204
7.7.1;Introduction;204
7.7.2;What Polak said, and related comments;205
7.7.2.1;Polak's starting point;206
7.7.2.2;Polak on Grassmann and Peano;206
7.7.2.3;Polak's unconvincing consideration;207
7.7.2.4;Was Peano `deceived' by Gibbs?;213
7.7.3;Burali-Forti and Marcolongo and the Italian Vector School;214
7.7.4;Conclusion;215
7.7.5;Acknowledgements
;215
7.8;Rudolf Mehmke, an outstanding propagator of Grassmann's vector calculus;216
7.8.1;Biography;216
7.8.2;Lectures;218
7.8.3;Scientific publications and instruments;219
7.8.4;Vector commission;220
7.8.5;Mehmke's main publications on vector calculus;221
7.8.6;Relativity theory;223
7.8.7;Mehmke's correspondence;223
7.8.8;Summary;226
7.9;Robert and Hermann Grassmann's influence on the history of formal logic;228
7.9.1;Introduction;228
7.9.2;General theory of forms;230
7.9.3;Logical interpretation;231
7.9.4;Influences;232
7.9.5;Acknowledgement;235
7.10;Hermann Grassmann's contribution to Whitehead's foundations of logic and mathematics;236
7.10.1;Introduction;236
7.10.2;A. N. Whitehead's Treatise on Universal Algebra;237
7.10.3;A picture of A. N. Whitehead by D. Emmett;238
7.10.4;Structure and method: From Leibniz to the Grassmanns and A. N. Whitehead;239
7.10.4.1;Leibniz's thesis;239
7.10.4.1.1;Divisibility;240
7.10.4.1.2;Combinatorics;240
7.10.4.2;What did Hermann learn from his father Justus?;241
7.10.4.2.1;From his Crystallonomy;241
7.10.4.2.2;From his philosophy;242
7.10.4.3;Parenthesis on prizes;243
7.10.4.4;The new geometries;244
7.10.4.5;Courses in Cambridge;244
7.10.4.6;Whitehead's early geometrical works;245
8;Present and future of Hermann Grassmann's ideas in mathematics;248
8.1;Grassmann's legacy;249
8.1.1;Evolution of Geometric Algebra and Calculus;250
8.1.2;Recent developments in Geometric Algebra;252
8.1.3;Products in Geometric Algebra;254
8.1.4;Conformal Geometric Algebra;259
8.1.5;The algebra of ruler and compass;260
8.2;On Grassmann's regressive product;267
8.2.1;A new mathematical discipline;267
8.2.2;An algebra of pieces of space;268
8.2.3;Applications to geometry and mechanics;270
8.2.4;The regressive product;273
8.2.5;Subordinate form;273
8.2.6;Modular lattices;275
8.2.7;Nonassociativity of the geometric product;275
8.2.8;Multiplication of flags;276
8.2.9;Where did this leave Grassmann?;277
8.2.10;Where does this leave us?;279
8.2.11;Giving Hermann Grassmann the final word;280
8.3;Projective geometric theorem proving with Grassmann–Cayley algebra;281
8.3.1;Introduction;281
8.3.2;Classical Grassmann–Cayley algebra;282
8.3.3;Theorem proving in projective incidence geometry with Grassmann–Cayley algebra;288
8.3.4;Conclusion;291
8.4;Grassmann, geometry and mechanics;292
8.4.1;Introduction;292
8.4.2;Grassmann, Hamilton, and Gibbs;293
8.4.3;Interpreted spaces;294
8.4.4;Points and weighted points;295
8.4.5;Bound vectors and bivectors;296
8.4.6;Sums of bound vectors and bivectors;297
8.4.7;The equilibrium of a rigid body;299
8.4.8;Momentum;300
8.4.9;Newton's Second Law;301
8.4.10;The regressive product;302
8.4.11;Projective geometry;303
8.4.12;Geometric constructions;304
8.4.13;Geometric theorems;304
8.4.14;Conclusions;307
8.5;Representations of spinor groups using Grassmann exterior algebra;308
8.6;Hermann Grassmann's theory of linear transformations;315
8.6.1;Introduction;315
8.6.2;Definition of the fraction;316
8.6.3;Peano's and Whitehead's takes on the fraction;319
8.6.4;Exchanging the denominators;321
8.6.5;Spectral theory;323
8.6.6;Concluding remarks;326
8.6.7;Acknowledgments
;327
8.7;The Golden Gemini Spiral;328
8.7.1;Introduction;328
8.7.2;Notation;329
8.7.3;Castor and Pollux, the Gemini Twins;330
8.7.4;Constructing the Golden Gemini Spiral;330
8.7.5;The eye of the Gemini Spiral;332
8.7.6;Intertwining Gemini Spirals;333
8.8;A short note on Grassmann manifolds with a view to noncommutative geometry;335
8.8.1;Introduction;335
8.8.2;On Grassmann manifolds;336
8.8.3;A view to noncommutative geometric spaces;338
8.8.4;Conclusion;342
9;Present and future of Hermann Grassmann's ideas in philology;345
9.1;Hermann Grassmann: his contributions to historical linguistics and speech acoustics;346
9.1.1;Introduction;346
9.1.2;Grassmann's work in historical linguistics;346
9.1.3;Grassmann's contribution to the acoustic phonetics of vowels;350
9.1.4;Conclusion;352
9.1.5;Acknowledgements;353
9.2;Grassmann's ``Worterbuch des Rig-Veda'' (Dictionary of Rig-Veda): a milestone in the study of Vedic Sanskrit;354
9.2.1;Remarks on Rgveda (RV);354
9.2.2;Accomplishments of the Old Indic grammarians;355
9.2.3;Entries in Vedic dictionaries;356
9.2.4;Grammatical features of Vedic Sanskrit;356
9.2.5;Grassmann's qualifications for such a dictionary;356
9.2.6;Grassmann's Dictionary of Rig-Veda;357
9.2.7;Exemplary comparison of Grassmann's dictionary with the Petersburg dictionary by Otto Böhtlingk and Rudolph Roth, pt. 2. (1856–1858);360
9.2.8;Recognition of the linguistic accomplishments;362
9.3;The Rigveda Dictionary from a modern viewpoint;363
9.3.1;Lemmas, forms and meaning;364
9.3.1.1;1. Analysis of the entry;366
9.3.1.2;2. Meaning entries;368
9.3.1.3;3. Form entries;368
9.3.2;Metrical analysis;370
9.3.3;Prepositions, particles, etc.;371
9.3.4;Abstract language and German;373
9.3.5;The decisive year of 1875;374
9.4;Grassmann's contribution to lexicography and the living-on of his ideas in the Salzburg Dictionary to the Rig-Veda;376
9.4.1;Introduction;376
9.4.2;Comparing Grassmann and RIVELEX from a modern lexicographical point of view;377
9.4.2.1;Pre-Lexicography;377
9.4.2.2;Elaboration of a macrostructure;378
9.4.3;Working out a microstructure;380
9.4.4;Final remarks;385
10;Hermann Grassmann's impact on music, computing and education;387
10.1;Calculation and emotion: Hermann Grassmann and Gustav Jacobsthal's musicology;388
10.2;Classification of complex musical structures by Grassmann schemes;398
10.2.1;Global compositions;398
10.2.2;Classification of global compositions;401
10.2.3;Grassmann's technique;404
10.2.4;The musical meaning of Grassmann's approach;405
10.2.5;Varèse's interpretation;407
10.3;New views of crystal symmetry guided by profound admiration of the extraordinary works of Grassmann and Clifford;410
10.3.1;Introduction;410
10.3.2;Computer visualization of crystal symmetry;411
10.3.3;Appendix. Clifford geometric algebra description of space groups;415
10.3.3.1;Cartan–Dieudonné and geometric algebra ;415
10.3.3.2;Two-dimensional point groups;417
10.3.3.3;Three-dimensional point groups;418
10.3.3.4;Space groups ;418
10.3.4;Acknowledgments;419
10.4;From Grassmann's vision to geometric algebra computing;420
10.4.1;Introduction;420
10.4.2;Benefits of conformal geometric algebra;421
10.4.2.1;Unification of mathematical systems;422
10.4.2.2;Intuitive handling of geometric objects;423
10.4.2.3;Intuitive handling of geometric operations;424
10.4.2.4;Robotics application example;424
10.4.3;Geometric algebra computing technology;425
10.4.3.1;Compilation ;427
10.4.3.2;Adaptation to different parallel processor platforms ;428
10.4.4;Conclusion;430
10.5;Grassmann, Pauli, Dirac: special relativity in the schoolroom;431
10.5.1;Introduction;431
10.5.2;Grassmann's mathematical parenthood;432
10.5.3;Space and perception;433
10.5.4;Mathematical models of space;433
10.5.5;Didactical aspects of the geometric product;436
10.5.6;The Quantum-mechanical misconception;438
10.5.7;Didactical aspects of special relativity;439
10.5.8;Spacetime algebra;440
10.5.9;The quantum-mechanical misconception revisited;442
10.5.10;Remark about the history of the interpretation of Dirac matrices;443
10.5.11;Main focus at school;444
11;Appendix;448
11.1;On the concept and extent of pure theory of number (1827);450
11.1.1;The three orders of enumeration;459
11.1.2;The general conjunction;463
11.1.3;The types of calculation;463
11.1.4;Survey of the types of calculation;464
11.1.5;Mechanical conjunction;465
11.1.6;Chemical conjunction;466
11.1.7;Dynamic conjunction;471
11.1.8;On the negative numbers;474
11.1.9;Proof that there can be no conjunction higher than exponentiation;478
11.1.10;Concluding remarks;481
11.2;Remarks on illustrations;483
11.3;Notes on contributors;498
11.4;References;517
11.5;Index of names and citations;545