Petrovic | Measure and Integral | Buch | 978-1-032-71242-0 | sack.de

Buch, Englisch, 530 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 957 g

Reihe: Textbooks in Mathematics

Petrovic

Measure and Integral

Theory and Practice
1. Auflage 2025
ISBN: 978-1-032-71242-0
Verlag: Chapman and Hall/CRC

Theory and Practice

Buch, Englisch, 530 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 957 g

Reihe: Textbooks in Mathematics

ISBN: 978-1-032-71242-0
Verlag: Chapman and Hall/CRC


This accessible introduction to the topic covers the theory of measure and integral, as introduced by Lebesgue and developed in the first half of the 20th century. It leads naturally to Banach spaces of functions and linear operators acting on them.

This material in Measure and Integral: Theory and Practice is typically covered in a graduate course and is almost always treated in an abstract way, with little or no motivation. The author employs a plethora of examples and exercises and strives to motivate every concept with its historical background. This textbook is accessible to a wider range of students, including at the undergraduate level.

A major problem facing anyone teaching measure theory is how to combine the elementary approach (measure on the real line or in the plane) and the abstract measure theory. The author develops a theory of measure in the plane, then shows how to generalize these ideas to an abstract setting.

The result is a textbook accessible to a wider range of students.

The material requires a good understanding of topics often referred to as advanced calculus, such as Riemann integration on Euclidean spaces and series of functions. Also, a reader is expected to be proficient in the basics of set theory and point-set topology, preferably including metric spaces.

Petrovic Measure and Integral jetzt bestellen!

Zielgruppe


Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


Prologue

I     Preliminaries                                                                                                                         

1      Set Theory                                                                                                                                                                                

1.1       Sets

1.2       Functions

1.3       Cardinal and Ordinal Numbers

1.4       The Axiom of Choice

2      Metric Spaces                                                                                                                                                                         

2.1       Elementary Theory of Metric Spaces

2.2       Completeness

2.3       Compactness

2.4       Limits of Functions

2.5       Baire’s Theorem

3      Geometry of the Line and the Plane                                                                                                                       

II      Measure Theory                                                                                                                    

4      Lebesgue Measure on R2                                                                                                                                                   

4.1       Jordan Measure

4.2       Lebesgue Measure

4.3       The s-Algebra of Lebesgue Measurable Sets

5      Abstract Measure                                                                                                                                                                  

5.1       Measures and Measurable Sets

5.2       Carath´eodory Extension of Measure

5.3       Lebesgue Measure on Euclidean Spaces

5.4       Beyond Lebesgue s-Algebra

5.5       Signed Measures

6      Measurable Functions                                                                                                                                                         

6.1       Definition and Basic Facts

6.2       Fundamental Properties of Measurable Functions

6.3       Sequences of Measurable Functions

III       Integration Theory                                                                                                             

7      The Integral                                                                                                                                                                             

7.1       About Riemann Integral

7.2       Integration of Nonnegative Measurable Functions

7.3       The Integral of a Real-Valued Function

7.4       Computing Lebesgue Integral

8      Integration on Product Spaces                                                                                                                                     

8.1       Measurability on Cartesian Products

8.2       Product Measures

8.3       The Fubini Theorem

9      Differentiation and Integration                                                                                                                                   

9.1       Dini Derivatives

9.2       Monotone Functions

9.3       Functions of Bounded Variation

9.4       Absolutely Continuous Functions

9.5       The Radon–Nikodym Theorem

IV      An Introduction to Functional Analysis                                                                    

10   Banach Spaces                                                                                                                                                                         

10.1   Normed Linear Spaces

10.2   The Space Lp(X, µ)

10.3   Completeness of Lp(X, µ)

10.4   Dense Sets in Lp(X, µ)

10.5   Hilbert Space

10.6   Bessel’s Inequality and Orthonormal Bases

10.7   The Space C(X)

11   Continuous Linear Operators Between Banach Spaces                                                                                

11.1   Linear Operators

11.2   Banach Space Isomorphisms

11.3   The Uniform Boundedness Principle

11.4   The Open Mapping and Closed Graph Theorems

12   Duality                                                                                                                                                                                        

12.1   Linear Functionals

12.2   The Hahn–Banach Theorem

12.3   The Dual of Lp(X, µ)

12.4   The Dual Space of L8(X, µ)

12.5   The Dual Space of C(X)

12.6   Weak Convergence

Epilogue                                                                                                                                                                                            

Solutions and Answers to Selected Exercises                                                                                                           

Bibliography

Subject Index                                                                                                                                                                                 

Author Index


John Srdjan Petrovic was born in Belgrade, Yugoslavia. He earned his PhD from the University of Michigan under the direction of Dr.Carl Pearcy. His research area is the theory of operators on Hilbert space, and he has published more than 30 articles in prestigious journals. He is a professor of mathematics at Western Michigan University and his visiting positions include Texas A&M University, Indiana University, and University of North Carolina Charlotte. His text, Advanced Caluclus: Theory and Practice, is in its second edition (CRC Press).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.