Petridis / Kehagias | Predictive Modular Neural Networks | E-Book | sack.de
E-Book

E-Book, Englisch, Band 466, 314 Seiten, eBook

Reihe: The Springer International Series in Engineering and Computer Science

Petridis / Kehagias Predictive Modular Neural Networks

Applications to Time Series
Erscheinungsjahr 2012
ISBN: 978-1-4615-5555-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Applications to Time Series

E-Book, Englisch, Band 466, 314 Seiten, eBook

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4615-5555-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.

Petridis / Kehagias Predictive Modular Neural Networks jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction.- 1.1 Classification, Prediction and Identification: an Informal Description.- 1.2 Part I: Known Sources.- 1.3 Part II: Applications.- 1.4 Part III: Unknown Sources.- 1.5 Part IV: Connections.- I Known Sources.- 2. Premonn Classification and Prediction.- 3. Generalizations of the Basic Premonn.- 4. Mathematical Analysis.- 5. System Identification by the Predictive Modular Approach.- II Applications.- 6. Implementation Issues.- 7. Classification of Visually Evoked Responses.- 8. Prediction of Short Term Electric Loads.- 9. Parameter Estimation for and Activated Sludge Process.- III Unknown Sources.- 10. Source Identification Algorithms.- 11. Convergence of Parallel Data Allocation.- 12. Convergence of Serial Data Allocation.- IV Connections.- 13. Bibliographic Remarks.- 14. Epilogue.- Appendices.- A— Mathematical Concepts.- A.1 Notation.- A.2 Probability Theory.- A.3 Sequences of Bernoulli Trials.- A.4 Markov Chains.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.