Petrelli | Introduction to Python in Earth Science Data Analysis | Buch | 978-3-030-78054-8 | sack.de

Buch, Englisch, 229 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 541 g

Reihe: Springer Textbooks in Earth Sciences, Geography and Environment

Petrelli

Introduction to Python in Earth Science Data Analysis

From Descriptive Statistics to Machine Learning
1. Auflage 2021
ISBN: 978-3-030-78054-8
Verlag: Springer International Publishing

From Descriptive Statistics to Machine Learning

Buch, Englisch, 229 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 541 g

Reihe: Springer Textbooks in Earth Sciences, Geography and Environment

ISBN: 978-3-030-78054-8
Verlag: Springer International Publishing


This textbook introduces the use of Python programming for exploring and modelling data in the field of Earth Sciences. It drives the reader from his very first steps with Python, like setting up the environment and starting writing the first lines of codes, to proficient use in visualizing, analyzing, and modelling data in the field of Earth Science. Each chapter contains explicative examples of code, and each script is commented in detail. The book is minded for very beginners in Python programming, and it can be used in teaching courses at master or PhD levels. Also, Early careers and experienced researchers who would like to start learning Python programming for the solution of geological problems will benefit the reading of the book.

Petrelli Introduction to Python in Earth Science Data Analysis jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Part I Python for Geologists, a kick-off.- Setting Up Your Python Environment, Easily.- Python Essentials for a Geologist.- Start Solving Geological Problems Using Python.- Part II Describing Geological Data.- Graphical Visualization of a Geological Dataset.- Descriptive Statistics.- Part III Integrals and Differential Equations in Geology.- Numerical Integration.- Ordinary Differential Equations (ODE).- Partial Differential Equations (PDE).- Part IV Probability Density Functions and Error Analysis.- Probability Density Functions and their Use in Geology.- Error Analysis.- Part V Robust Statistics and Machine Learning.- Introduction to Robust Statistics.- 12. Machine Learning.


Maurizio Petrelli works as a researcher in petrology and volcanology at the Department of Physics and Geology, University of Perugia. In 2001, he graduated in Geology and obtained his PhD in February 2006 at the University of Perugia.His current studies are focused on the petrological, volcanological and geochemical characterization of magmatic systems with particular emphasis on time-scales estimates of magmatic processes. He combines the use of numerical simulations, experimental petrology and the study of natural samples. Since 2016, he has developed a new line of research at the Department of Physics and Geology, University of Perugia focused on the application of Machine Learning techniques to petrological and volcanological studies.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.