Pertijs / Huijsing Precision Temperature Sensors in CMOS Technology
2006
ISBN: 978-1-4020-5258-3
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 292 Seiten, eBook
Reihe: Analog Circuits and Signal Processing
ISBN: 978-1-4020-5258-3
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book describes the analysis and design of precision temperature sensors in CMOS IC technology, focusing on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The text shows how temperature characteristics can be used to obtain an accurate digital temperature reading. The book ends with a detailed description of three prototypes, one of which achieves the best performance reported to date.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Acknowledgment.
1. INTRODUCTION. 1.1 Motivation and Objectives. 1.2 Basic Principles. 1.3 Context of the Research. 1.4 Challenges. 1.5 Organization of the Book. References.
2. CHARACTERISTICS OF BIPOLAR TRANSISTORS. 2.1 Introduction. 2.2 Bipolar Transistor Physics. 2.3 Temperature Characteristics of Bipolar Transistors. 2.4 Bipolar Transistors in Standard CMOS Technology. 2.5 Processing Spread. 2.6 Sensitivity to Mechanical Stress. 2.7 Effect of Series Resistances and Base-Width Modulation. 2.8 Effect of Variations in the Bias Current. 2.9 Conclusions. References.
3. RATIOMETRIC TEMPERATURE MEASUREMENT USING BIPOLAR TRANSISTORS. 3.1 Introduction. 3.2 Generating an Accurate Current-Density Ratio. 3.3 Generating an Accurate Bias Current. 3.4 Trimming. 3.5 Curvature Correction. 3.6 Compensation for Finite Current-Gain. 3.7 Series-Resistance Compensation. 3.8 Conclusions. References.
4. SIGMA-DELTA ANALOG-TO-DIGITAL CONVERSION. 4.1 Introduction. 4.2 Operating Principles of Sigma-Delta ADCs. 4.3 First-Order Sigma-Delta Modulators. 4.4 Second-Order Sigma-Delta Modulators. 4.5 Decimation Filters. 4.6 Filtering of Dynamic Error Signals. 4.7 Conclusions. References.
5. PRECISION CIRCUIT TECHNIQUES. 5.1 Introduction. 5.2 Continuous-Time Circuitry. 5.3 Switched-Capacitor Circuitry. 5.4 Advanced Offset Cancellation Techniques. 5.5 Conclusions. References.
6. CALIBRATION TECHNIQUES. 6.1 Introduction. 6.2 Conventional Calibration Techniques. 6.3 Batch Calibration. 6.4 Calibration based on DV Measurement. 6.5 Voltage Reference Calibration. 6.6 Conclusions. References.
7. REALIZATIONS. 7.1 A Batch-Calibrated CMOS Smart Temperature Sensor. 7.2 A CMOS Smart Temperature Sensor with a 3s Inaccuracy of ±0.5° C from -50° C to 120° C. 7.3 A CMOS Smart Temperature Sensor with a 3s Inaccuracy of ±0.1° C from -55° C to 125° C. 7.4 Benchmark. References.
8. CONCLUSIONS. 8.1 Main Findings. 8.2 Other Applications of this Work. 8.3 Future Work. References.
Appendices. A Derivation of Mismatch-Related Errors. A.1 Errors in DV
B Resolution Limits of Sigma-Delta Modulators with a DC Input. B.1 First-Order Modulator. B.2 Second-Order Single-Loop Modulator. References.
C Non-Exponential Settling Transients. C.1 Problem Description. C.2 Settling Transients from V ¹ 0 to V . C.3 Settling Transients from V = 0 to V . Summary.
About the Authors. Index.




