Perrin / Denouette / Daclin | Switching Machines | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 421 Seiten, eBook

Perrin / Denouette / Daclin Switching Machines

Volume 2 Sequential Systems
1972
ISBN: 978-94-010-2867-7
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

Volume 2 Sequential Systems

E-Book, Englisch, 421 Seiten, eBook

ISBN: 978-94-010-2867-7
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Perrin / Denouette / Daclin Switching Machines jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


7/Synthesis of the Tables.- 7.1. Generalizations.- 7.1.1. Introduction.- 7.1.2. Review of a sequential system’s general equations.- 7.1.3. Normal form of the hypotheses.- 7.2. Natural methods.- 7.2.1. Ginsburg method-first case.- 7.2.1.2. The method in the general case.- 7.2.2. Ginsburg method-second case.- 7.2.2.1. Introductory examples.- 7.2.2.2. General statement of the method.- 7.2.3. Aizerman’s method.- 7.2.3.1. Introductory example.- 7.2.3.2. General statement of the Aizerman method.- 7.2.3.3. Other examples of application.- 7.2.4. Asynchronous machines-Moisil-Ioanin method.- 7.3. Algebraic methods-Notion of a regular expression.- 7.3.1. Introduction.- 7.3.2. The algebra of regular expressions.- 7.4. Gloushkov method.- 7.4.1. Generalizations. Indexation of regular expressions.- 7.4.2. Examples of synthesis starting from regular expressions.- 7.4.2.1. First example.- 7.4.2.2. Second example of synthesis by the Gloushkov method.- 7.4.3. Statement of the Gloushkov method.- 7.4.4. Application of regular expression to the synthesis of asynchronous systems.- 7.4.4.1. Representation of asynchronous controls in terms of regular expressions.- 7.4.4.2. Example of synthesis of an asynchronous system.- 7.5. Conclusion.- 7.A. Brzozowski method.- 7. A.1. Basic definitions. The derivative of a regular expression with respect to a sequence of unity length.- 7. A.2. Use of the derivative to obtain the table of a machine.- Exercises.- 8/Reduction of the Number of States in a Table.- 8.1. Introduction-Statement of the problem.- 8.2. Equivalence of states.- 8.3. Reduction of complete tables.- 8.3.1. Construction of the table of equivalent pairs.- 8.3.2. Grouping of equivalent pairs.- 8.3.3. Formation of the minimal flow table.- 8.3.4. Another example of the minimization of a table.- 8.4. Reduction of incomplete tables.- 8.4.1. Basic definitions.- 8.4.2. Determination of compatible pairs.- 8.4.3. Grouping compatible terms.- 8.4.4. Choice of the M.C. and construction of the minimal flow table.- 8.4.5. Second example of reduction of an incomplete flow table.- 8.4.6. Third example of reduction.- 8.5. Programming of flow table reduction on digital computers.- 8.6. Reduction of a phase table.- 8.6.1. Equivalent states-pseudo-equivalent states.- 8.6.2. Row merging.- 8.7. Application of the method of compatible pairs to asynchronous systems.- 8.7.1. Synthesis of the reduction by Huffman’s method.- 8.7.2. Example of the reduction of an asynchronous sequential system.- 8.7.2.1. Reduction by the method of compatible pairs.- 8.7.2.2. Reduction by the Huffman method.- 8.8. Conclusion.- Exercises.- 9/Assignment of the Internal States (Asynchronous Sequential Systems).- 9.1. Introduction.- 9.1.1. Generalizations.- 9.1.2. Asynchronous systems.- 9.1.3. Introductory example.- 9.1.4. Diverse methods and solutions.- 9.2. Connected sets.- 9.2.1. Connected sets and sequences.- 9.2.2. Application to the problem of asynchronous assignment.- 9.3. Huffman numbers.- 9.4. The influence of essential connections on the density of the assignment table.- 9.5. Reduction of the system’s number of connections.- 9.5.1. Example 1.- 9.5.2. Example 2.- 9.5.3. Example 3.- 9.5.4. General principles of the method.- 9.5.5. Case of tables having ‘don’t cares’.- 9.6. Creation of supplementary unstable states.- 9.6.1. Example 4.- 9.6.2. Example 5.- 9.6.3. Remarks about the method.- 9.7. Incomplete merging of the primitive phase table.- 9.8. General remarks about assignment.- 9.9. Assignments and universal circuits.- 9.9.1. Universal assignments.- 9.9.2. Circuit with 2s0 + 1 relays (assignment by 2 s0 + 1 variables).- 9.9.3. Circuits with one relay per row (assignment by one variable per row).- Exercises.- 10/Assignment of Internal States (Synchronous Systems).- 10.1. Introduction.- 10.2. Distinct assignments-valid assignments.- 10.3. Example of the different assignments of a same table.- 10.4. Assignment from adjacency study.- 10.5. General concepts concerning partitions.- 10.5.1. Relations of order, sums, products.- 10.5.2. Use of p.s.p. for assignment.- 10.6. Search for the p.s.p..- 10.6.1. Study of the pairs.- 10.6.2. Maximal partitions.- 10.7. Properties connected with partitions p.s.p..- 10.7.1. Systems having a 2 block p.s.p..- 10.7.2. Systems having p.s.p. of more than 2 blocks.- 10.8. Use of the p.s.p. in assignment.- 10.9. Decomposition of sequential machines.- 10.9.1. Definitions.- 10.9.2. Decomposition theorem.- 10.9.3. Examples.- 10.9.4. Remarks concerning circuit realization.- 10.10. Partition pairs.- 10.10.1. Definition.- 10.10.2. Properties and particular partitions.- 10.10.3. Method for finding partition pairs.- 10.10.4. Properties connected with partition pairs.- 10.10.5. Conclusion.- 10.11. Assignment of the uncompletely specified tables.- 10.12. Extension methods.- 10.12.1. Examples of application extension of a given flow table by adding equivalent states.- 10.12.2. Example 2.- 10.12.3. Important comments.- 10.13. Assignment of internal states by taking into account the output.- 10.14. Conclusion.- Exercises.- 11/Examples of Applications.- 11.1. Introduction.- 11.2. Applications on computers.- 11.2.1. Shift register-logical flip-flop.- 11.2.2. Algebraic binary adder-deducter.- 11.2.3. Transfer authorization from one register to another.- 11.2.4. Reduction of a microprogram’s length.- 11.2.4.1. Statement of the problem.- 11.2.4.2. Generalizations-inputs, outputs, states.- 11.2.4.3. Application to the example.- 11.2.4.4. Points of interest.- 11.3. Sequentially controlled machines.- 11.3.1. Complex automaton.- 11.3.1.1. Preliminaries.- 11.3.1.2. Phase table.- 11.3.1.3. Conclusions.- 11.3.2. Sequential functioning in a cement’s oven control.- 11.3.2.1. Statement of the problem.- 11.3.2.2. Definitions of the different quantities.- 11.3.2.3. Study of the sequential functioning.- 11.3.2.4. The problem put into equations.- 11.3.2.5. Note relative to the section.- 11.3.2.6. Conclusions.- 11.3.3. Marshalling trains.- 11.4. Analysis of a system of electrical airplane generation.- 11.4.1. Generalizations.- 11.4.2. Logical functioning of the system.- 11.4.2.1. Notation.- 11.4.2.2. Equations.- 11.4.2.3. Excitation matrix.- 11.4.2.4. Study of the transitions.- 11.4.3. Study of logical failures.- 11.4.3.1. Generalizations.- 11.4.3.2. Functioning without the ground generator.- 11.4.3.3. Functioning with the ground generator.- 11.4.4. Defaults in the protection boxes or phase order.- 11.4.5. Conclusions.- 11.A.1. Example of memory synthesis by the phase table method.- 11.A.1.1. Phase table.- 11.A.1. 2. Reduction of the phase table.- 11.A.1.3. Output matrix-excitation matrix 275 11. A.2. Sequential switching system on an analog computer analac A 110.- 11.A.2.1. Statement of the problem.- 11.A.2.2. Realization of the scheme.- 11.A.2.3. Generalization.- 11.A.3. Automaton with securities.- 1 1.A.3.1. Generalities.- 1 1.A.3.2. Equations-primitive phase table.- 1 1.A.3.3. Excitation table-output table.- 11.A.3.4. Introduction of the first type of security-use of delayed signals.- 11.A.3.5. Introduction of the second type security lock control.- 1 1.A.3.6. Conclusion.- 11.A.4. Simulation of sequential systems.- 11.A.4.1. Logical simulators.- 11.A.4.2. Computer simulation.- Exercises.- 12/Linear Sequential Systems.- 12.1. Introduction.- 12.1.1. Example.- 12.2. Review of algebra.- 12.2.1. Matrices and determinants.- 12.2.2. Polynomial forms-Galois theorem.- 12.2.3. Eigen values-Eigen vectors of amatrix.- 12.3. Transition of linear sequential systems.- 12.3.1. 0 Input-non-singular matrix A.- 12.3.2. Any input-non-singular matrix A.- 12.3.3. Matrix A + I.- 12.4. General configurations of linear machines.- 12.5. Discrete Laplace transform.- 12.5.1. Introduction.- 12.5.2. p-Transforms.- 12.5.2.1. I ntroduction: example of a non- periodical sequence-representation.- 12.5.2.2. Example of a periodical sequence.- 12.5.2.3. Generalization-inverse transform.- 12.5.2.4. Initial conditions.- 12.6. Study of linear systems by the discrete Laplace transform.- 12.6.1. Transfer function.- 12.6.2. Elementary linear operators.- 12.6.2.1. Transfer function of the shift.- 12.6.2.2. Representation of transfer-systematic.- 12.6.2.3. Composition of systems.- 12.6.3. Variables of state.- 12.6.3.1. Passage from the transfer function to the state representation.- 12.6.3.2. Passage from the state representation to the transfer representation.- 12.6.3.3. Comparison of the representations.- 12.7. Application.- 12.7.1. Determination of sequences from a pulse generator.- 12.7.2. Eigen functions and their applications.- 12.7.2.1. Introduction.- 12.7.2.2. Functions shifted to the left.- 12.7.2.3. Functions shifted to the right.- 12.7.2.4. Shifting to the right with conditioned memories.- 12.7.3. Transferences.- 12.8. Conclusion.- Exercises.- 13/Theoretical Study of the Real Functioning of Binary Switching Elements-Non-Binary Switching Elements.- 13.1. Many-valued algebra.- 13.2. Ternary algebra and relay systems.- 13.2.1. Ordinary contact relays.- 13.2.2. Special contact relays.- 13.3. Expression for a function defined in a set of p values.- 13.4. Characteristic equation of a relay.- 13.5. Analysis of relay systems.- 13.5.1. Contacts a, x, y, ordinary.- 13.5.2. Case in which the x and y contacts are ordinary and special.- 13.5.3. Conclusion.- 13.6. 5-valued algebra and relay systems.- 13.7. Multipositional contactors.- 13.7.1. Structure of a multipositional contactor.- 13.7.2. ? Mounting of multipositional contactors.- 13.7.3. Characteristic functions of a multipositional contactor.- 13.8. Analysis of a multipositional contactor circuit ideal functioning.- 13.9. Minimization of the conductibility function of the commutators’ circuits.- 13.9.1. Definition of the disjunctive canonical form.- 13.9.2. Interpretation of the total order minimization condition.- 13.9.3. Interpretation of the partial order minimization condition.- 13.9.4. Application of ternary algebra.- 13.10. Synthesis of relay circuits with ordinary contacts 400 13.10.1. Action of a switch A on a relay X.- 13.10.1 Action of a switch A on a relay X.- 13.10.1.1. Engagement of a relay X by engagement of a switch A.- 13.10.1.2. Releasing a relay X by releasing a switch A.- 13.10.1.3. Engagement of a relay X by releasing a switch A.- 13.10.1.4. Release of a relay X by closing a switch A.- 13.10.2. Action of a switch A on 2 relays X and Y.- 13.10.2.1. Closing of X and Y by closing or release of A.- 13.10.2.2. Release of X and Y by closing or release of A.- 13.10.3. Real functioning of a sequential system.- 13.10.4. Synthesis of a hazard-free relay system.- 13.10.4.1. Equations of a sequential relay system.- 13.10.4.2. Hazards.- 13.10.4.3. General synthesis of the preceding example.- 13.11. Lukasiewicz algebras and their applications.- 13.11.1. Definition and properties.- 13.11.2. Characteristic equation and conductibility of a relay with several ordinary and special contacts.- 13.11.3. Real functioning of a many contact relay system.- 13.12. Conclusion.- Exercises.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.